[1]王福林. 底水油藏底水锥进及人工隔层稳油控水机理研究[D]. 黑龙江大庆:大庆石油学院,2010.WANG F L. Research on water coning and artificial interlayer control coning to enhance oil recovery mechanism of bottom water reservoir[D]. Daqing,Heilongjiang:Daqing Petroleum Institute,2010.
[2]党乐征. 边底水油藏稳产技术对策研究[D]. 陕西西安:西安石油大学,2020.DANG L Z. Technical measures for stable production of edge and bottom water reservoirs[D]. Xi'an,Shaanxi:Xi'an Shiyou University,2020.
[3]魏艳. 边底水油藏水侵模拟实验研究[D].山东青岛:中国石油大学(华东),2014.WEI Y. Simulation experimental study on water invasion in the edge and bottom water reservoirs[D]. Qingdao,Shandong:China University of Petroleum(East China),2014.
[4]艾小凡,张景皓,陈静. 丰富川高含水特低渗油藏注水优化技术[J]. 辽宁石油化工大学学报,2020,40(3):52-56.AI X F,ZHANG J H,CHEN J. Water Injection optimization technology in high water cut period of ultra-low permeability reservoir in Fengfuchuan Oilfield[J]. Journal of Liaoning Shihua University,2020,40(3):52-56.
[5]胡俊杰,马珍福,邵现振,等. 底水稠油油藏润湿性对水锥回升的影响[J]. 油田化学,2022,39(4):644-650.HU J J,MA Z F,SHAO X Z,et al. Effect of wettability on water cone in bottom water reservoir[J]. Oilfield Chemistry,2022,39(4):644-650.
[6]姜汉桥,姚军,姜瑞忠,等.油藏工程原理与方法[M]. 山东青岛:中国石油大学出版社,2006:90-98.JIANG H Q,YAO J,JIANG R Z,et al. Principles and methods of reservoir engineering[M]. Qingdao,Shandong:China University of Petroleum Press,2006:90-98.
[7]MUSKAT M,WYCOKOFF R D. An approximate theory of water-coning in oil production[J]. Transactions of the AIME,1935,114(1):144-163.
[8]MEYER H I,GARDER A O. Mechanics of two immiscible fluids in porous media[J]. Journal of Applied Physics,1954,25(11):1400-1406.
[9]JU B S,QIU X F,DAI S G,et al. A study to prevent bottom water from coning in heavy-oil reservoirs:design and simulation approaches[J]. Journal of Energy Resources Technology,2008,130(3):102-108.
[10]LIU Y C,WANG J,MENG J X,et al. A New method for development of bottom-water reservoir without natural barrier[J]. Xinjiang Petroleum Geology,2010,31(5):536-538.
[11]SOBOCINSKI D P,CORNELIUS A J. A correlation for predicting water coning time[J]. Journal of Petroleum Technology,1965,17(5):594-600.
[12]CHIERICI G L,CIUCCI G M,PIZZI G. A systematic study of gas and water coning by potentiometric models[J]. Journal of Petroleum Technology,1964,16(8):923-929.
[13]袁清芸. 底水油藏油井见水时间预测[J]. 石油地质与工程,2018,32(5):73-5、124.YUAN Q Y. Water breakthrough time prediction of oil wells in the bottom water reservoir[J]. Petroleum Geology & Engineering,2018,32(5):73-5,124.
[14]何军,张玉丰,陈烨菲,等. 多层系边底水气藏生产动态特征及见水时间预测方法[J]. 中国科技论文,2023,18(5):555-561,566.HE J,ZHANG Y F,CHEN Y F,et al. Production performance characteristics and water breakthrough time prediction of multi-layer edge and bottom water gas reservoir[J]. China Science Paper,2023,18(5):555-561,566.
[15]程晓军. 超深断溶体油藏油井见水特征及生产制度优化——以塔里木盆地顺北油田Z井为例[J]. 新疆石油地质,2021,42(5):554-558.CHENG X J. Characteristics of water breakthrough and optimization of production system of oil wells drilled in ultra-deep fault-karst reservoirs:A case study on Well Z in Shunbei Oilfield,Tarim Basin[J]. Xinjiang Petroleum Geology,2021,42(5):554-558.
[16]吴浩君,姜永,刘洪洲,等. 砂砾岩潜山边底水复合油藏见水特征分析[J]. 新疆石油天然气,2021,17(1):43-47、64.WU H J,JIANG Y,LIU H Z,et al. Analysis on water breakthrough characteristics of edge bottom water composite reservoir in glutenite buried hill[J]. Xinjiang Oil & Gas,2021,17(1):43-47,64.
[17]余佩蓉,齐晓霞. 鄂尔多斯盆地某区块油井见水特征分析[J]. 石油地质与工程,2019,33(1):76-79.YU P R,QI X X. Water breakthrough characteristics of a block in Ordos Basin[J]. Petroleum Geology & Engineering,2019,33(1):76-79..
[18]金永辉,陈儒兵,李源流,等. 低渗透底水油藏油井见水类型及影响因素研究[J]. 新疆地质,2022,43(2):242-245.JIN Y H,CHEN R B,LI Y L,et al. Study on water breakthrough types and influencing factors of oil wells in low permeability reservoir with bottom water[J]. Xinjiang Geology,2022,43(2):242-245.
[19]谷建伟,周梅,李志涛,等. 基于数据挖掘的长短期记忆网络模型油井产量预测方法[J]. 特种油气藏,2019,26(2):77-81.GU J W,ZHOU M,LI Z T,et al. Oil well production forecast with long-short term memory network model based on data mining[J]. Special Oil & Gas Reservoirs,2019,26(2):77-81.
[20]薛永超,袁志乾,金青爽,等. 基于深度森林算法的油井产量预测[J]. 科学技术与工程,2022,22(11):4327-4334.XUE Y C,YUAN Z Q,JIN Q S,et al. Production prediction of oil well based on deep forest algorithm[J]. Science Technology and Engineering,2022,22(11):4327-4334.
[21]韩益东,尹洪军,徐国涵,等. 基于机器学习的高含水期油井产量预测方法[J]. 河南科学,2022,40(10):1569-1575.HAN Y D,YIN H J,XU G H,et al. Prediction method of oil well production in high water cut period based on machine learning[J]. Henan Science,2022,40(10):1569-1575
[22]李宏波,罗平亚,白杨,等. 机器学习算法概述及其在钻井工程中的应用[J]. 新疆石油天然气,2022,18(1):1-13.LI H B,LONG P Y,BAI Y,et al. Summary for machine learning algorithms and their applications in drilling engineering[J]. Xinjiang Oil & Gas,2022,18(1):1-13.
[23]敬海锋. 白狼城油区长2油层组油藏精细描述[D].陕西西安:西安石油大学,2016.JING H F. Fine description of Chang 2 reservoir in Bailangcheng oil region[D]. Xi'an,Shaanxi:Xi'an Shiyou University,2016.
[24]刘学军,高玉峰,贺一凡,等. 基于BP神经网络的围岩质量分类研究[J]. 水力发电,2022,48(9):51-55.LIU X J,GAO Y F,HE Y F,et al. Research on quality classification of surrounding rock based on BP neural network[J]. Water Power,2022,48(9):51-55.
[25]赵德康,韩冰,冯国瑞,等. 基于LC-SSA-BP神经网络模型的煤层导水断裂带高度预测[J]. 煤矿安全,2023,54(5):78-83.ZHAO D K,HAN B,FENG G R,et al. Prediction of coal seam water conduction fault zone height based on LC-SSA-BP neural network model[J]. Safety in Coal Mines,2023,54(5):78-83.
[26]李展峰,张占女,王树涛,等. M1-1油田厚陡窄复杂油藏水平井产能预测方法研究[J]. 石油地质与工程,2020,34(2):71-75.LI Z F,ZHANG Z N,WANG S T,et al. Study on productivity prediction method of horizontal wells in thick,steep,narrow complex reservoirs of M1-1 Oilfield[J]. Petroleum Geology & Engineering,2020,34(2):71-75.
[27]黄迎松. 灰色关联分析法在产量递减主控因素确定中的应用[J]. 石油地质与工程,2018,32(4):92-94.HUANG Y S. Application of grey relational analysis in determining the main controlling factors of production decline[J]. Petroleum Geology & Engineering,2018,32(4):92-94.
[28]郭素杰,李景卫,于伟高,等. 基于知识驱动数据挖掘技术在复杂储层评价中的应用[J]. 石油钻采工艺,2022,44(2):247-252.GUO S J,LI J W,YU W G,et al. Application of knowledge-driven data mining in the complex reservoir evaluation[J]. Oil Drilling & Production Technology,2022,44(2):247-252.
[29]申卯兴,薛西锋,张小水. 灰色关联分析中分辨系数的选取[J]. 空军工程大学学报:自然科学版,2003,19(1):68-70.SHEN M X,XUE X F,ZHANG X S. Determination of discrimination coefficient in grey incidence analysis[J]. Journal of Air Force Engineering University(Natural Science Edition),2003,19(1):68-70.
[30]MITTAL S,PATHAK S,DHAWAN H,et al. A machine learning approach to improve ignition properties of high-ash Indian coals by solvent extraction and coal blending[J]. Chemical Engineering Journal,2021,413:127385.
[31]罗发强,刘景涛,陈修平,等. 基于BP和LSTM神经网络的顺北油田5号断裂带地层孔隙压力智能预测方法[J]. 石油钻采工艺,2022,44(4):506-514.LUO F Q,LIU J T,CHEN X P,et al. Intelligent method for predicting formation pore pressure in No.5 fault zone in Shunbei Oilfield based on BP and LSTM neural network[J]. Oil Drilling & Production Technology,2022,44(4):506-514.
[32]CHEN H,WANG Y,ZUO M,S,et al. A new prediction model of CO2 diffusion coefficient in crude oil under reservoir conditions based on BP neural network[J]. Energy,2022,239(C):122286.
[33]李雨,侯磊,徐磊,等. 基于混合BP神经网络的原油管道电耗预测研究[J]. 石油化工高等学校学报,2022,35(2):68-73.LI Y,HOU L,XU L,et al. Power consumption prediction method for crude oil pipeline based on hybrid BP neural network[J]. Journal of Petrochemical Universities,2022,35(2):68-73.
[34]张晓文,杨煜普,许晓鸣. 神经网络传递函数的功能分析与仿真研究[J]. 计算机仿真,2005,22(10):183-185.ZHANG X W,YANG Y P,XU X M. Genetic optimization for neural network evolving with function based coding[J]. Computer Simulation,2005,22(10):183-185.
|