新疆石油天然气 ›› 2023, Vol. 19 ›› Issue (1): 27-34.DOI: 10.12388/j.issn.1673-2677.2023.01.005
压裂支撑剂研究与应用进展
出版日期:
2023-03-06
发布日期:
2023-03-06
作者简介:
张敬春(1984-),2014年毕业于山东大学化学专业,博士,高级工程师,目前从事储层改造、油田化学研究。(Tel)0990-6881109(E-mail)zhangjingchun1@petrochina.com.cn
基金资助:
1、中国石油天然气股份公司科技项目“油田用化工新材料产品开发”(2020E-28);
2、新疆维吾尔自治区天山英才计划项目“油气储层改造新型支撑剂研发与应用”(2022198717)。
Online:
2023-03-06
Published:
2023-03-06
Supported by:
摘要:
支撑剂作为支撑水力裂缝的关键材料,其相关性能与压裂改造效果密切相关,关于压裂支撑剂的研究受到了持续而广泛的关注。本文分类概述了压裂用支撑剂及相关技术的研究与应用情况,包括石英砂、陶粒、覆膜支撑剂等常规支撑剂及近年来报道的自悬浮支撑剂、气悬浮支撑剂、原位生成支撑剂等新型支撑剂及相关技术等共计10个类别。最后对压裂支撑剂及相关技术的发展方向进行了展望,以期为相关领域的研究者提供参考,促进压裂支撑剂技术的进步。
张敬春, , 任洪达 , 俞天喜 , 尹剑宇 , 周健 , 周洪涛.
压裂支撑剂研究与应用进展 [J]. 新疆石油天然气, 2023, 19(1): 27-34.
ZHANG Jingchun, , REN Hongda , YU Tianxi , YIN Jianyu , ZHOU Jian , ZHOU Hongtao. [J]. Xinjiang Oil & Gas, 2023, 19(1): 27-34.
[1]MONTGOMERY C T,SMITH M B. Hydraulic fracturing:history of an enduring technology[J]. Journal of Petroleum Technology,2010,62(12):26-40. [2]杜红莉,张薇,马峰,等. 水力压裂支撑剂的研究进展[J]. 硅酸盐通报,2017,36(8):2625-2630. [3]郑新权,王欣,张福祥,等. 国内石英砂支撑剂评价及砂源本地化研究进展与前景展望[J]. 中国石油勘探,2021,26(1):131-137. [4]SALDUNGARAY P,PALISCH T. Understanding ceramic proppants:Are they all created equal?[C]. SPE Unconventional Gas Conference and Exhibition,Muscat,Oman,January 2013. [5]VINCENT M C. Proving it-a review of 80 published field studies demonstrating the importance of increased fracture conductivity[C]. SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,September 2002. [6]方宇飞,丁冬海,肖国庆,等. 陶粒支撑剂的研究及应用进展[J]. 化工进展,2022,41(5):2511-2525. [7]赵学松,刘琦. 煤基固体废弃物制备压裂支撑剂研究进展[J/OL]. 洁净煤技术:1-17. https://kns.cnki.net/kcms/detail/11.3676.td.20220217.1623.001.html. DOI:10.13226/j.issn. 1006-6772.21101401. [8]孔祥辰,白频波,宋伟,等. 煅烧煤矸石添加量对陶粒支撑剂力学性能的影响[J]. 硅酸盐通报,2022,41(6):2039-2046. [9]赵紫石,崔李鹏,赵旭,等. 利用固废煤矸石制备陶粒支撑剂的研究[J]. 山西煤炭,2019,39(1):1-4. [10]WU X,HUO Z,REN Q,et al. Preparation and characterization of ceramic proppants with low density and high strength using fly ash[J]. Journal of Alloys and Compounds,2017(702):442-448. [11]王天祥,王肃凯,张贵仪,等. 工业固废制备石油压裂支撑剂[J]. 新疆石油天然气,2022,18(3):82-85. [12]李灿然,李向辉,遆永周,等. 压裂支撑剂研究进展及发展趋势[J]. 陶瓷学报,2016,37(6):603-607. [13]程倩倩,李娜,张琳羚,等. 新型覆膜支撑剂研究进展[J]. 热固性树脂,2020,35(6):66-70. [14]张潇,王占一,吴峙颖,等. 压裂支撑剂的覆膜改性技术[J/OL]. 化工进展:1-19. https://kns.cnki.net/kcms/detail/11.1954.TQ.20220617.1410.002.html. DOI:10.16085/j.issn.1000-6613.2022-0487. [15]王丹. 水力压裂支撑剂技术及面临的挑战[J]. 中外能源,2018,23(9):24-30. [16]BESTAOUI-SPURR N. Materials science improves silica sand strength[C]. SPE International Symposium and Exhibition on Formation Damage Control,Lafayette,Louisiana,USA,February 2014. [17]JACKSON K,OREKHA O. Low density proppant in slickwater applications improves reservoir contact and fracture complexity-a permian basin case history[C]. SPE Liquids-Rich Basins Conference-North America,Midland,Texas,USA,September 2017. [18]李树良. ULW-1.05超低密度支撑剂评价及应用[J]. 油气田地面工程,2013,32(9):66-67. [19]杨双春,佟双鱼,李东胜,等. 低密度支撑剂研究进展[J]. 化工进展,2019,382(9):4264-4274. [20]MYERS R,POTRATZ J,MOODY M. Field application of new lightweight proppant in Appalachian tight gas sandstones[C]. SPE Eastern Regional Meeting,Charleston,West Virginia,USA,September 2004. [21]林厉军,刘付臣,黄降水,等. 北美压裂用低密度支撑剂技术的进展[J]. 化工管理,2018,(31):103-106. [22]HAN J,PIROGOV A,LI C,et al. Maximizing productivity with ultra-lightweight proppant in unconventional wells:simulations and field cases[C]. SPE Asia Pacific Hydraulic Fracturing Conference,Beijing,China,August 2016. [23]KESHAVARZ A,JOHNSON R,CARAGEORGOS T,et al. Improving the conductivity of natural fracture systems in conjunction with hydraulic fracturing in stress sensitive reservoirs[C]. SPE Asia Pacific Oil & Gas Conference and Exhibition,Perth,Australia,October 2016. [24]光新军,王敏生,韩福伟,等. 压裂支撑剂新进展与发展方向[J]. 钻井液与完井液,2019,36(5):529-533、541. [25]JARDIM A T,PRATA F G M,GOMEZ J R,et al. Ultralightweight proppants:an effective approach to address problems in long horizontal gravel packs offshore Brazil[J]. SPE Drilling & Completion,2012,27(4):613-624. [26]张伟民,李宗田,李庆松,等. 高强度低密度树脂覆膜陶粒研究[J]. 油田化学,2013,30(2):189-192、220. [27]魏伟. 煤层气压裂用低密度坚果壳支撑剂性能评价与现场试验[J]. 油气藏评价与开发,2020,10(4):93-96. [28]杨珅. 一种页岩气田压裂用低密度支撑剂的研制[D]. 四川成都:西南石油大学,2017. [29]李波,李璐,黄勇,等. 树脂包裹坚果壳超低密度支撑剂的研制[J]. 油田化学,2009,26(3):256-259、281. [30]RICKARDS A R,BRANNON H D,WOOD W D,et al. High strength,ultralightweight proppant lends new dimensions to hydraulic fracturing applications[J]. SPE Annual Technical Conference and Exhibition,Denver,Colorado,USA,October 2003. [31]PARKER M A,RAMURTHY K,SANCHEZ P W. New proppant for hydraulic fracturing improves well performance and decreases environmental impact of hydraulic fracturing operations[C]. SPE Eastern Regional Meeting,Lexington,Kentucky,USA,October 2012. [32]LI C,SPURR N,ROYCE T N. Post-fracturing production performance of small sized proppant in major unconventional formations[C]. SPE International Hydraulic Fracturing Technology Conference and Exhibition,Muscat,Oman,October 2018. [33]BECKWITH R. Proppants:where in the world[J]. Journal of Petroleum Technology,2011,63(4):36-41. [34]AL-TAILJI W H,SHAH K,DAVIDSON B M. The application and misapplication of 100-mesh sand in multi-fractured horizontal wells in low-permeability reservoirs[C]. SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,February 2016. [35]CALVIN J,GRIESER B,BACHMAN T. Enhancement of well production in the SCOOP woodford shale through the application of microproppant[C]. SPE Hydraulic Fracturing Technology Conference and Exhibition,The Woodlands,Texas,USA,January 2017. [36]DAHL J,NGUYEN P,DUSTERHOFT R,et al. Application of micro-proppant to enhance well production in unconventional reservoirs:laboratory and field results[C]. SPE Western Regional Meeting,Garden Grove,California,USA,April 2015. [37]董林芳,陈新阳. 自悬浮支撑剂的性能评价与现场应用[J]. 石油钻探技术,2018,46(6):90-94. [38]CAO W,XIE K,LU X,et al. Self-suspending proppant manufacturing method and its property evaluation[J]. Journal of Petroleum Science and Engineering,2020,192:1-10. [39]MAHONEY R P,SOANE D,KINCAID K P,et al. Self-suspending proppant[C]. SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,February 2013. [40]LIANG F,SAYED M,AL-MUNTASHERI G,et al. Overview of existing proppant technologies and challenges[C]. SPE Middle East Oil & Gas Show and Conference,Manama,Bahrain,March 2015. [41]梁莹. 自悬浮支撑剂研究进展及应用现状[J]. 油气井测试,2022,31(1):47-51. [42]GOLDSTEIN B,JOSYULA K,VANZEELAND A,et al. Improve well performance by reducing formation damage[C]. SPE/AAPG/SEG Unconventional Resources Technology Conference,San Antonio,Texas,USA,July 2015. [43]GOLDSTEIN B,JOSYULA K,VANZEELAND A,et al. Improve well performance by reducing formation damage[C]. SPE/AAPG/SEG Unconventional Resources Technology Conference,San Antonio,Texas,USA,July 2015. [44]李占争. 自悬浮支撑剂的研发与应用[J]. 化学工程与装备,2017(6):95-96. [45]郐婧文,卢祥国,曹伟佳,等. 胍胶自增稠支撑剂性能及其储层伤害性评价[J].油田化学,2019,36(2):219-224. [46]王磊. 牛庄洼陷官17井区沙四段页岩油自悬浮支撑剂压裂试验[J]. 油气藏评价与开发,2022,12(4):684-689. [47]张龙胜,秦升益,雷林,等. 新型自悬浮支撑剂性能评价与现场应用[J]. 石油钻探技术,2016,44(3):105-108. [48]黄博,熊炜,马秀敏,等. 新型自悬浮压裂支撑剂的应用[J]. 油气藏评价与开发,2015,5(1):67-70. [49]QUINTERO H J,MATTUCCI M,O’NEIL B,et al. Enhanced proppant suspension in a fracturing fluid through capillary bridges[C]. SPE Western Regional Meeting,Garden Grove,California,USA,April 2018. [50]BOYER J,MALEY D,O’NEIL B. Chemically enhanced proppant transport[C]. SPE Annual Technical Conference and Exhibition,Amsterdam,The Netherlands,October 2014. [51]QUINTERO H,FARION G,GARDENER D,et al. Successful application of a salt tolerant high viscous friction reducer technology:past and present[C]. SPE Annual Technical Conference and Exhibition,Calgary,Alberta,Canada,September 2019. [52]BAMMIDI V S,MORTAZAVI M,MCCLURE M,et al. Applying field-proven surface modified proppant SMP to increase gas production:a case study from Marcellus shale[C]. SPE Eastern Regional Meeting,Charleston,West Virginia,USA,October 2019. [53]MALEY D,BOYER J,O’NEIL B,et al. Surface modification of proppant to improve transport and placement[C]. International Petroleum Technology Conference,Kuala Lumpur,Malaysia,December 2014. [54]RADWAN A. A multifunctional coated proppant:a review of over 30 field trials in low permeability formations[C]. SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,October 2017. [55]唐梅荣,赵振峰,陈文斌,等. 页岩油体积压裂原位生成支撑剂材料研究进展[J]. 功能材料,2022,53(9):9042-9050. [56]毛峥,李亭,刘德华,等. 水力压裂支撑剂应用现状与研究进展[J]. 应用化工,2022,51(2):525-530、537. [57]TONG S,MILLER C,MOHANTY K. Generation of in-situ proppant through hydro-thermal reactions[C]. SPE Hydraulic Fracturing Technology Conference and Exhibition,The Woodlands,Texas,USA,February 2019. [58]CHANG F F,BERGER P D,LEE C H. In-situ formation of proppant and highly permeable blocks for hydraulic fracturing[C]. SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,February 2015. [59]HUANG J,GONG W,LIN L,et al. In-situ proppant:beads,microproppant,and channelized-proppant[C]. Abu Dhabi International Petroleum Exhibition & Conference,Abu Dhabi,UAE,November 2019. [60]赵立强,张楠林,张以明,等. 自支撑相变压裂技术室内研究与现场应用[J].天然气工业,2020,40(11):60-67. [61]PEI Y,ZHAO P,ZHOU H,et al. Development and latest research advances of self-propping fracturing technology[J]. SPE Journal,2021,26(1):281-292. [62]李小刚,廖梓佳,杨兆中,等. 压裂用支撑剂应用现状和研究进展[J]. 硅酸盐通报,2018,37(6):1920-1923. [63]曲占庆,何利敏,王冰,等. 支撑剂表面疏水处理方法的研究[J]. 石油化工高等学校学报,2014,27(1):90-96. [64]FENG Y C,MA C Y,DENG J G,et al. A comprehensive review of ultralow-weight proppant technology[J]. Petroleum Science,2021,18(3):807-826. [65]FU L,ZHANG G,GE J,et al. Study on a new water-inhibiting and oil-increasing proppant for bottom-water-drive reservoirs[J]. Journal of Petroleum Science and Engineering,2016,145:290-297. [66]浮历沛. 通道压裂用自聚性支撑剂研究[D]. 山东青岛:中国石油大学(华东),2017. [67]WANG C,ZHANG K,O’NEIL B,et al. Proppant upgrade by wettability alteration[C]. International Petroleum Technology Conference,Bangkok,Thailand,November 2016. [68]GREEN J,DEWENDT A,TERRACINA J,et al. First proppant designed to decrease water production[C] SPE Annual Technical Conference and Exhibition,Dallas,Texas,USA,September 2018. [69]任闽燕,宋金波,郑铎,等. 复合控水砂表面结构及疏水性能研究[J]. 石油钻采工艺,2012,34(1):103-106. [70]史斌,苏延辉,邢洪宪,等. 基于疏水改性的超低密度控水支撑剂的制备及其性能[J]. 油田化学,2022,39(3):401-406、437. [71]张宁,田波,邢洪宪,等. 恩平稠油油藏亲油疏水支撑剂实验优选研究[J]. 当代化工,2022,51(7):1593-1596. [72]PALISCH T,CHAPMAN M,LEASURE J. Novel proppant surface treatment yields enhanced multiphase flow performance and improved hydraulic fracture clean-up[C]. SPE Liquids-Rich Basins Conference-North America,Midland,Texas,USA,September 2015. [73]GILLARD M,MEDVEDEV O,PENA A,et al. A new approach to generating fracture conductivity[C]. SPE Annual Technical Conference and Exhibition,Florence,Italy,September 2010. [74]MEDVEDEV A,YUDINA K,PANGA M K,et al. On the mechanisms of channel fracturing[C]. SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,February 2013. [75]杨文波. 高速通道压裂技术及其现场应用[J]. 新疆石油天然气,2019,1(2):80-84、5. [76]YUDIN A,RAKHMATULLIN M,SADYKOVA D,et al. Local-sand-enabled channel fracturing. Case study from Jurassic Formations in Uvat Region[C]. SPE Russian Petroleum Technology Conference,Moscow,Russia,October 2019. [77]INYANG U A,NGUYEN P D,CORTEZ J. Development and field applications of highly conductive proppant-free channel fracturing method[C]. SPE Unconventional Resources Conference,The Woodlands,Texas,USA,April 2014. [78]KAKADJIAN S,ZAMORA F,VENDITTO J J. Zeta potential altering system for increased fluid recovery,production,and fines control[C]. International Symposium on Oilfield Chemistry,Houston,Texas,USA,February 2007. [79]KAKADJIAN S,GARZA J,ZAMORA F. Enhancing gas production in coal bed methane formations with Zeta Potential altering system[C]. SPE Asia Pacific Oil and Gas Conference and Exhibition,Brisbane,Queensland,Australia,October 2010. [80]MASON D,SHAMMA H,VAN PETEGEM R,et al. Advanced sand control chemistry to increase maximum sand free rate with improved placement technique-a case study[C]. SPE Annual Technical Conference and Exhibition,Amsterdam,The Netherlands,October 2014. [81]NGUYEN P D,WEAVER J D. Enhancing well productivity in a tight-gas formation with an aqueous-based,surface-modification agent:laboratory study[C]. Tight Gas Completions Conference,San Antonio,Texas,USA,November 2010. [82]FU L P,ZHANG G,GE J,et al. Experimental study of self-aggregating proppants:new approaches to proppant flowback control[J]. The Open Petroleum Engineering Journal,2016,9:236-246. |
[1] | 刘超, 申春生, 刘建华, 刘思远, 庞维浩. 疏松砂岩微粒运移主控因素及矿场影响特征[J]. 新疆石油天然气, 2023, 19(1): 16-20. |
[2] | 江铭, 李志强, 段贵府, 杨静嘉, 石阳志, 石晗琦. 水力裂缝导流能力对深层页岩气产能的影响规律#br#[J]. 新疆石油天然气, 2023, 19(1): 35-41. |
[3] | 王涛, 程垒明, 项远铠, 承宁, 王博, 周航. 砾石影响下裂缝扩展规律数值模拟[J]. 新疆石油天然气, 2023, 19(1): 42-48. |
[4] | 罗垚, 孔辉, 徐克山, 吐尔逊江·马木提, 郑恒. 砂泥岩储层水力裂缝穿层规律数值模拟 [J]. 新疆石油天然气, 2023, 19(1): 49-56. |
[5] | 朱道义, 施辰扬, 赵岩龙, 陈神根, 曾美婷. 二氧化碳驱化学封窜材料与方法研究进展及应用#br#[J]. 新疆石油天然气, 2023, 19(1): 65-72. |
[6] | 李强, , 王福玲, , 周畅 , 陈佳硕 , 李庆超, , 王彦玲. 硅氧烷类增稠剂对二氧化碳压裂液的性能影响[J]. 新疆石油天然气, 2023, 19(1): 73-80. |
[7] | 陈神根, 王瑞, 易勇刚, 张鑫, 徐金山, 尚晋. 纳米纤维强化泡沫液膜渗透性及稳定性实验研究#br#[J]. 新疆石油天然气, 2023, 19(1): 81-89. |
[8] | 张羽鹏, 盛茂, 王波, 李杰, 田守嶒, 张志超, 李根生. 径向分支井控制加密井裂缝扩展数值模拟[J]. 新疆石油天然气, 2022, 18(3): 31-37. |
[9] | 杨能宇, 梁天成, 邱金平, 才博, 易新斌, 严玉忠, . 压裂支撑剂性能测试方法不确定度评定[J]. 新疆石油天然气, 2022, 18(3): 38-43. |
[10] | 王天祥, 王肃凯, 张贵仪, 蒲松龄, 张立朋. 工业固废制备石油压裂支撑剂[J]. 新疆石油天然气, 2022, 18(3): 82-85. |
[11] | 梁天成, 杨能宇, 才博, 蒙传幼, 易新斌, 严玉忠, 黄欣, 唐建华. 压裂支撑剂浊度测试方法及评价指标分析 [J]. 新疆石油天然气, 2022, 18(1): 32-37. |
[12] | 陈希, 刘蕊宁, 谢勃勃, 潘玉婷, 何小东. 考虑层理缝的页岩油藏压裂水平井产能模型 [J]. 新疆石油天然气, 2022, 18(1): 73-79. |
[13] | 刘凯新, 郑伟杰, 戴丽娅, 潘丽燕, 张拢, 蔡国清. X井区低成本体积压裂技术探索及实践[J]. 新疆石油天然气, 2022, 18(1): 80-85. |
[14] | 刘凤和 , 刘德秩 , 谯世均 , 邢星 , 雷彪 , 白杨 . 青海油田狮子沟-英中构造带堵漏技术研究[J]. 新疆石油天然气, 2021, 17(4): 1-7. |
[15] | 文贤利, 孔明炜, 罗垚, 王健, 赵春艳, 翟怀建, 王荣. 准噶尔盆地南缘高温高压高闭合应力致密储层改造技术研究及应用[J]. 新疆石油天然气, 2021, 17(4): 15-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||