[1]贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136.
[2]苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.
[3]郭清,包莉军,孙海芳. 中国石油钻井科技攻关三十年回顾与展望(六)[J]. 钻采工艺,2020,43(2):1-6.
[4]汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177.
[5]曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术,2019,47(3):25-33.
[6]韩烈祥. 川渝地区超深井钻完井技术新进展[J]. 石油钻采工艺,2019,41(5):555-561.
[7]陈县伟. 深井超深井钻井技术现状和发展趋势[J]. 化学工程与装备,2023,(1):211-213.
[8]李献民,徐文瑞,杨万祥,等. 准噶尔盆地南缘山前带地震采集技术及成效[J]. 新疆石油天然气,2021,17(1):6-14.
[9]孙浩. 抗高温钻井液机理研究及性能评价[J]. 西部探矿工程,2021,33(6):87-91.
[10]李辉,郑义平,陈亮,等. 抗高温高密度钻井液配方的研制与性能评价[J]. 长江大学学报:自然科学版,2019,16(11):27-31、5.
[11]贾海平. 钻井中盐膏层危害及其应对措施分析[J]. 中国石油和化工标准与质量,2023,43(3):97-99.
[12]孙金声,白英睿,程荣超,等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638.
[13]刘广志. 世界科学深钻最新成果综述[J]. 中国地质,1992,(2):25-28.
[14]KERKHOFF E,ISMAIL A,BUTCHER J,et al. A unique high temperature,low rheology divalent brine-based reservoir drilling fluid improved horizontal drilling performance in hard sandstone formation[C]. ADIPEC in Abu Dhabi,UAE,October 2022.
[15]PATEL A D. Water-based drilling fluids with high temperature fluid loss control additive:US Patent 5789349[P]. 1998-08-04.
[16]SPOONER M,MAGEE K,OTTO M,et al. The application of HTHP water based drilling fluid on a blowout operation[C]. The AADE 2003 National Technology Conference,Houston,Texas,USA,April 2003.
[17]SORIC T,HUELKE R,MARINESCU P. Uniquely engineered water-base high-temperature drill-in fluid increases production,cuts costs in Croatia campaign[C]. SPE/IADC Drilling Conference,Amsterdam,The Netherlands,February 2003.
[18]NORFLEET J E,JARRETT M A,POTTS P A,et al. Water based fluids comprising multivalent salts and low molecular weight,low charge cationic polyacrylamide copolymers:US Patent 6855671[P]. 2005-02-15.
[19]HAYES J R. High performance water-based mud system:US Patent 7351680[P]. 2008-04-01.
[20]THAEMLITZ C J,PATEL A D,COFFIN G,et al. New environmentally safe high-temperature water-based drilling-fluid system[J]. SPE Drilling & Completion,1999,14(3):185-189.
[21]张金昌,谢文卫. 科学超深井钻探技术国内外现状[J]. 地质学报,2010,84(6):887-894.
[22]杨泽星,孙金声. 高温(220 ℃)高密度(2.3 g/cm3)水基钻井液技术研究[J]. 钻井液与完井液,2007,24(5):15-17.
[23]孙金声,杨泽星. 超高温(240 ℃)水基钻井液体系研究[J].钻井液与完井液,2006,23(1):5-18.
[24]陈馥,杨媚,艾加伟,等. 水基钻井液CO2污染的处理[J]. 钻井液与完井液,2016,33(6):58-62.
[25]司西强,王中华,王伟亮. 聚醚胺基烷基糖苷类油基钻井液研究[J]. 应用化工,2016,45(12):2308-2312.
[26]于兴东,姚新珠,林士楠,等. 抗220 ℃高温油包水钻井液研究与应用[J]. 石油钻探技术,2001,29(5):45-47.
[27]SOLIMAN A A. Oil base mud in high pressure high temperature wells[R]. Middle East Oil Show,1995,SPE 29864.
[28]CARBAJAL D,BURRESS C,SHUMWAY B,et al. Combining proven anti-sag technologies for HPHT North Sea applications:clay-free oil-based fluid and synthetic,sub-micron weight material[C]. SPE/IADC Drilling Conference and Exhibition,Amsterdam,The Netherlands,March 2009.
[29]BLAND R,MULLEN G,GONZALEZ Y,et al. HP/HT drilling fluids challenges[C]. IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition,Bangkok,Thailand,November 2006.
[30]GALINDO K A,DEVILLE J P,ESPAGNE B J L,et al. Fluorous-based drilling fluid for ultra-high-temperature wells[C]. SPE Annual Technical Conference and Exhibition,New Orleans,Louisiana,USA,September 2013.
[31]HENRY S,PETTINGILL,REPSOL YPF. Word-wide deepwater exploration and production:past,present and future[C]. Offshore Technology Conference,Houston,Texas,USA,May 2002.
[32]李宁,杨海军,文亮,等. 库车山前超深井抗高温高密度油基钻井液技术[J]. 世界石油工业,2020,27(5):68-73.
[33]祝学飞,孙俊,舒义勇,等. ZQ2井盐膏层高密度欠饱和盐水聚磺钻井液技术[J]. 钻井液与完井液,2019,36(6):716-720.
[34]尹达,刘锋报,康毅力,等. 库车山前盐膏层钻井液漏失成因类型判定[J]. 钻采工艺,2019,42(5):121-123.
[35]王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29-33.
[36]WANG J,ZHANG J,YAN L,et al. Prevent barite static sag of oil-based completion fluid in ultra-deep wells[C]. International Petroleum Technology Conference,March 2021,SPE IPTC-21282-MS.
[37]李欣忆,冯雪梅,朱珠. 钻头直下三千丈“西南”扛鼎超深层[J]. 中国石油石化,2023,(6):54-55.
[38]李超,罗健生,刘刚,等. FLAT-PRO深水合成基钻井液恒流变作用机理研究[J]. 广东化工,2021,48(4):242-243、241.
|