新疆石油天然气 ›› 2023, Vol. 19 ›› Issue (4): 29-41.DOI: 10.12388/j.issn.1673-2677.2023.04.004
1.西安石油大学石油工程学院,陕西西安 710065;
2.东北石油大学三亚海洋油气研究院,海南三亚 572000;
3.中国石油大学(北京)非常规油气科学技术研究院,北京昌平 102249。
出版日期:
2023-12-01
发布日期:
2023-12-04
作者简介:
梁拓(1994-),2022年毕业于中国石油大学(北京)油气田开发工程专业,博士,讲师,目前从事智能纳米流体提高采收率、稠油冷采、CCUS等方面研究。(Tel)18091396852(E-mail)ta.liang@foxmail.com
Research and Application Progress of Nanofluid for Enhanced Oil Recovery
1. College of Petroleum Engineering,Xi'an Shiyou University,Xi'an 710065,Shannxi,China;
2. Sanya Offshore Oil and Gas Research Institute,Northeast Petroleum University,Sanya 572000,Hainan,China;
3. Research Institute of Unconventional Oil & Gas Science and Technology,China University of Petroleum (Beijing),Changping 102249,Beijing,China.
Online:
2023-12-01
Published:
2023-12-04
摘要:
针对传统聚合物、表面活性剂等溶液在提高原油采收率过程中存在黏度保留率低、吸附损耗量大等问题,介绍了纳米流体提高原油采收率相关研究进展。总结了目前应用于提高原油采收率领域中纳米材料的合成方法和纳米流体稳定性的评价手段;综述了纳米流体提高原油采收率的六大主要机理,包括降低界面张力、改变润湿性、降低原油黏度、提高泡沫稳定性、结构分离压力和降压增注;调研了目前纳米流体提高原油采收率的油田现场应用进展,并提出了限制纳米流体矿场大规模应用的瓶颈问题,一是缺乏高效开发非常规油藏的纳米驱油体系;二是关于二维片状纳米流体的研发、提高采收率机理的研究及矿场先导试验三位一体的理论和技术研究尚不成系统,需要更深层次的探讨和研究。为解决纳米流体的实践推广应用指明方向。
中图分类号:
梁拓, 杨昌华, 张衍君, 黎盼, 屈鸣, 侯吉瑞.
LIANG Tuo, YANG Changhua, ZHANG Yanjun, LI Pan, QU Ming, HOU Jirui.
Research and Application Progress of Nanofluid for Enhanced Oil Recovery [J]. Xinjiang Oil & Gas, 2023, 19(4): 29-41.
[1]陈神根,王瑞,易勇刚,等. 纳米纤维强化泡沫液膜渗透性及稳定性实验研究[J]. 新疆石油天然气,2023,19(1):81-88. [2]LI C C,LI Y H,PU H. Molecular simulation study of interfacial tension reduction and oil detachment in nanochannels by surface-modified silica nanoparticles[J]. Fuel,2021,292(3):120318. [3]黄志洋,赵雄虎,苗留洁,等. 智能流体研究进展及其在钻井液中的应用与展望[J]. 石油钻采工艺,2022,44(3):283-290. [4]ALMAHFOOD M,BAI B J. The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications[J]. Journal of Petroleum Science and Engineering,2018,171(2):196-210. [5]MEHROOZ N,GHARIBSHAHI R,JAFARI A,et al. Low-temperature in-situ synthesis of cerium oxide nanoparticles applicable in EOR processes:parametric study by Taguchi approach[J]. Journal of Petroleum Science and Engineering,2022,219(2):111078. [6] NOWROUZI I,MANSHAD A K,MOHAMMADI A H. Effects of TiO2,MgO,and γ-Al2O3 nano-particles in carbonated water on water-oil interfacial tension (IFT) reduction in chemical enhanced oil recovery (CEOR) process[J]. Journal of Molecular Liquids,2019,292:111348. [7]周海燕,刘斌,孙强,等. 海上河流相稠油油田纳米微球多轮次调驱效果评价研究[J]. 新疆石油天然气,2021,17(1):60-64、4. [8]陈璐鑫,卓绿燕,ALAIN P T,等. 温敏聚合物/纳米SiO2复合材料的制备与性能评价[J]. 油田化学,2023,40(1):12-18. [9]梁拓,侯吉瑞,屈鸣,等. 2-D智能纳米黑卡稳定乳状液的机理[J]. 油田化学,2020,37(2):297-304. [10]YIN T,YANG Z,LIN M,et al. Preparation of Janus nanosheets via reusable cross-linked polymer microspheres template[J]. Chemical Engineering Journal,2019,371:507-515. [11]冯阳,侯吉瑞,兰夕堂,等. 硫化钼纳米片对油水界面特性的影响[J]. 油田化学,2023,40(3):482-489. [12]TABORDA E A,FRANCO C A,LOPERA S H,et al. Effect of surface acidity of SiO2 nanoparticles on thermal stability of polymer solutions for application in EOR processes[J]. Journal of Petroleum Science and Engineering,2020,196(3):107802.. [13]JIA H,DAI J,MIAO L C,et al. Potential application of novel amphiphilic Janus-SiO2 nanoparticles stabilized O/W/O emulsion for enhanced oil recovery[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,622:126658. [14]祝名伟. 光子晶体用SiO2/Ag/SiO2核壳结构亚微米微球制备与性能研究及其自组装[D]. 浙江杭州:浙江大学,2005. [15]ZHANG T,QIAO Z,GE J,et al. A self-templated route to hollow silica microspheres[J]. Journal of Physical Chemistry C,2009,113(8):3168-3175. [16]MURATORE C,HU J J,WANG B,et al. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition[J]. Applied Physics Letters,2014,104(26):261604-261604-5. [17]郑子尧,王柱,李春领,等. 磁控溅射法沉积TiO2低辐射膜及AFM分析[J]. 半导体光电,2005,26(5):3. [18]郭谦. 二氧化硅纳米颗粒和纳米玻璃的制备与表征[D]. 甘肃兰州:兰州大学,2018. [19]李景奎,王亚男,牟洪波,等. 磁控溅射法制备纳米氧化锌/木材复合材料及其物理性能变化[J]. 北京林业大学学报,2019,41(1):119-125. [20]程婷婷. 低渗裂缝性油藏微/纳米功能材料协同调驱作用与机理研究[D]. 北京:中国石油大学(北京),2020. [21]JIA F,LIANG F,YANG Z. Janus mesoporous nanodisc from gelable triblock copolymer[J]. ACS Macro Letters,2016,5(12):1344-1347. [22]WEI B,LI H,LI Q Z,et al. Investigation of synergism between surface-grafted nano-cellulose and surfactants in stabilized foam injection process[J]. Fuel,2017,211:223-232. [23]ZHANG L,YU J,YANG M,et al. Janus graphene from asymmetric two-dimensional chemistry[J]. Nature Communications,2013,4(1):1443. [24]YOON K Y,LI Z,NEILSON B M,et al. Effect of adsorbed amphiphilic copolymers on the interfacial activity of superparamagnetic nanoclusters and the emulsification of oil in water[J]. Macromolecules,2012,45(12):5157-5166. [25]QU M,HOU J,LIANG T,et al. Amphiphilic rhamnolipid molybdenum disulfide nanosheets for oil recovery[J]. ACS Applied Nano Materials,2021,4(3):2963-2972. [26]RAJ I,QU M,XIAO L,et al. Ultralow concentration of molybdenum disulfide nanosheets for enhanced oil recovery[J]. Fuel,2019,251:514-522. [27]JANG H,LEE W,LEE J. Nanoparticle dispersion with surface-modified silica nanoparticles and its effect on the wettability alteration of carbonate rocks[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,554:261-271. [28]LUO D,WANG F,VU B V,et al. Synthesis of graphene-based amphiphilic Janus nanosheets via manipulation of hydrogen bonding[J]. Carbon,2018,126:105-110. [29]WU H,YI W,CHEN Z,et al. Janus graphene oxide nanosheets prepared via pickering emulsion template[J]. Carbon,2015,93:473-483. [30]CACUA K,ORDOÑEZ F,ZAPATA C,et al. Surfactant concentration and pH effects on the Zeta potential values of alumina nanofluids to inspect stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,583:123960. [31]MAHBUBUL I M,ELCIOGLU E B,AMALINA M A,et al. Stability,thermophysical properties and performance assessment of alumina-water nanofluid with emphasis on ultrasonication and storage period[J]. Powder Technology,2019,345:668-675. [32]KIM H J,BANG I C,ONOE J. Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids[J]. Optics and Lasers in Engineering,2009,47(5):532-538. [33]SOUZA N S,RODRIGUES A D,CARDOSO C A,et al. Physical properties of nanofluid suspension of ferromagnetic graphite with high Zeta potential[J]. Physics Letters A,2012,376(4):544-546. [34]ZHANG H,QING S,ZHAI Y L,et al. The changes induced by pH in TiO2/water nanofluids:stability,thermophysical properties and thermal performance[J]. Powder Technology,2021,377:748-759. [35]KATIYAR A,HARIKRISHNAN A R,DHAR P. Influence of temperature and particle concentration on the pH of complex nanocolloids[J]. Colloid and Polymer Science,2017,295(9):1575-1583. [36]王超. 氧化锌纳米流体的制备及稳定性研究[J]. 现代盐化工,2021,48(2):34-35. [37]SUN Y,YANG D,SHI L,et al. Properties of nanofluids and their applications in enhanced oil recovery:a comprehensive review[J]. Energy & Fuels,2020,34(2):1202-1218. [38]FOROOZESH J,KUMAR S. Nanoparticles behaviors in porous media:application to enhanced oil recovery[J]. Journal of Molecular Liquids,2020,316:113876. [39]SHARMA T,SANGWAI J S. Silica nanofluids in polyacrylamide with and without surfactant:viscosity,surface tension,and interfacial tension with liquid paraffin[J]. Journal of Petroleum Science and Engineering,2017,152:575-585. [40]DENG X,TARIQ Z,MURTAZA M,et al. Relative contribution of wettability alteration and interfacial tension reduction in EOR:a critical review[J]. Journal of Molecular Liquids,2020,325:115175.. [41]高俊,谢传礼,游少雄,等. 纳米流体提高稠油采收率实验分析[J]. 石油地质与工程,2015,29(4):108-110. [42]MANSHAD A K,REZAEI M,MORADI S,et al. Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding[J]. Journal of Molecular Liquids,2017,248:153-162. [43]LIU R,LU J,PU W,et al. Synergetic effect between in-situ mobility control and micro-displacement for chemical enhanced oil recovery (CEOR) of a surface-active nanofluid[J]. Journal of Petroleum Science and Engineering,2021,205(4):108983. [44]LI Y Y,DAI C L,ZHOU H,et al. Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery[J]. Energy & Fuels,2017,32(1):287-293. [45]LUO D,WANG F,ZHU J,et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery:high performance at low concentration[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(28):7711-7716. [46]AUGUSTINE A,JUNIN R,ABDULLAH M O,et al. Application of polymeric nanofluid in enhancing oil recovery at reservoir condition[J]. Journal of Petroleum Science and Engineering,2020,194(1):107476. [47]HENDRANINGRAT L,LI S D,TORSÆTER O. A coreflood investigation of nanofluid enhanced oil recovery[J]. Journal of Petroleum Science and Engineering,2013,111:128-138. [48]NASR M S,ESMAEILNEZHAD E,ALLAHBAKHSH A,et al. Nitrogen-doped graphene quantum dot nanofluids to improve oil recovery from carbonate and sandstone oil reservoirs[J]. Journal of Molecular Liquids,2021,330:115715. [49]SHARMA T,IGLAUER S,SANGWAI J S. Silica nanofluids in an oilfield polymer polyacrylamide:interfacial properties,wettability alteration,and applications for chemical enhanced oil recovery[J]. Industrial & Engineering Chemistry Research,2016,55(48):12387-12397. [50]TIRAFERRI A,CHEN K L,SETHI R,et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum[J]. Journal of Colloid and Interface Science,2008,324(1-2):71-79. [51]KANJ M,SAKTHIVEL S,GIANNELIS E. Wettability alteration in carbonate reservoirs by carbon nanofluids[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,598:124819. [52]RADNIA H,RASHIDI A,SOLAIMANY N A R,et al. A novel nanofluid based on sulfonated graphene for enhanced oil recovery[J]. Journal of Molecular Liquids,2018,271:795-806. [53]BAYAT A,JUNIN R,SAMSURI A,et al. Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures[J]. Energy & Fuels,2014,28:6255-6266. [54]ALANSSARI S,WANG S,BARIFCANI A,et al. Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite[J]. Fuel,2017,206:34-42. [55]MINAKOV A V,PRYAZHNIKOV M I,SULEYMANA Y N,et al. Experimental study of nanoparticle size and material effect on the oil wettability characteristics of various rock types[J]. Journal of Molecular Liquids,2021,327:114906. [56]HENDRANINGRAT L,LI S D,TORSÆTER O. Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles:an experimental investigation[C]. SPE Reservoir Characterisation & Simulation Conference & Exhibition,Abu Dhabi,UAE,2013. [57]ROUSTAEI A,BAGHERZADEH H. Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs[J]. Journal of Petroleum Exploration and Production Technology,2015,5(1):27-33. [58]ZARGAR G,ARABPOUR T,MANSHAD A K,et al. Experimental investigation of the effect of green TiO2/Quartz nanocomposite on interfacial tension reduction,wettability alteration,and oil recovery improvement[J]. Fuel,2020,263:116599. [59]WAN SULAIMAN W R,ADALA A J,JUNIN R,et al. Effects of salinity on nanosilica applications in altering limestone rock wettability for enhanced oil recovery[J]. Advanced Materials Research,2015,1125:200-204. [60]青玉泉. 纳米二氧化硅复合降黏剂的制备及其性能评价[D]. 四川成都:西南石油大学,2019. [61]SHOKRLU Y H,BABADAGLI T. Effects of nano-sized metals on viscosity reduction of heavy oil/bitumen during thermal applications[C]. Unconventional Resources and International Petroleum Conference,Calgary,Alberta,Canadian,2010. [62]ISKANDAR F,DWINANTO E,ABDULLAH M,et al. Viscosity reduction of heavy oil using nanocatalyst in aquathermolysis reaction[J]. Kona Powder and Particle Journal,2016,33:3-16. [63]ELSHAWAF M. Consequence of graphene oxide nanoparticles on heavy oil recovery[C]. SPE Annual Technical Symposium and Exhibition,Dammam,Saudi Arabia,2018. [64]ZHANG Y,LIU Q,YE H,et al. Nanoparticles as foam stabilizer:mechanism,control parameters and application in foam flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering,2021,202(8):108561. [65]李兆敏,王鹏,李松岩,等. 纳米颗粒提高二氧化碳泡沫稳定性的研究进展[J]. 西南石油大学学报:自然科学版,2014,36(4):155-161. [66]BINKS B P,PHILIP J,RODRIGUES J A. Inversion of silica-stabilized emulsions induced by particle concentration[J]. Langmuir the ACS Journal of Surfaces & Colloids,2005,21(8):3296-302. [67]ZHU J,YANG Z,LI X,et al. Synergistic effect between wormlike micelles and nanoparticles in stabilizing foams for high temperature stimulation (Russian)[C]. SPE Russian Petroleum Technology Conference,Moscow,Russia,2018. [68]RISAL A R,MANAN M A,YEKEEN N P,et al. Rheological properties of surface-modified nanoparticles-stabilized CO2 foam[J]. Journal of Dispersion Science and Technology,2018,39(12):1767-1779. [69]TANG F Q,XIAO Z,TANG J A,et al. The effect of SiO2 particles upon stabilization of foam[J]. Journal of Colloid & Interface Science,1989,131(2):498-502. [70]YEKEEN N P,IDRIS A K,MANAN M A,et al. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability[J]. Chinese Journal of Chemical Engineering,2017,25(3):347-357. [71]KIM I,WORTHEN A J,JOHNSTON K P,et al. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams[J]. Journal of Nanoparticle Research,2016,18(4):1-12. [72]YEKEEN N,PADMANABHAN E,IDRIS A K. Synergistic effects of nanoparticles and surfactants on n-decane-water interfacial tension and bulk foam stability at high temperature[J]. Journal of Petroleum Science and Engineering,2019,179:814-830. [73]BAYAT A E,RAJAEI K,JUNIN R,et al. Assessing the effects of nanoparticle type and concentration on the stability of CO2 foams and the performance in enhanced oil recovery[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,511 :222-231. [74]FU C K,YU J,LIU N. Nanoparticle-stabilized CO2 foam for waterflooded residual oil recovery[J]. Fuel,2018,234:809-813. [75]YANG W,WANG T F,FAN Z X,et al. Foams stabilized by in situ-modified nanoparticles and anionic surfactants for enhanced oil recovery[J]. Energy & Fuels,2017,31(5):4721-4730. [76]张景楠,田磊,张红卫. 纳米流体强化驱油机理研究进展[J]. 油田化学,2021,38(1):184-190. [77]WASAN D T,NIKOLOV A D. Spreading of nanofluids on solids[J]. Nature,2003,423(6936):156-159. [78]TROKHYMCHUK A,HENDERSON D,NIKOLOV A,et al. A simple calculation of structural and depletion forces for fluids/suspensions confined in a film[J]. Langmuir,2001,17(16):4940-4947. [79]KONDIPARTY K,NIKOLOV A,WU S,et al. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure:statics analysis and experiments[J]. Langmuir,2011,27(7):3324-3335. [80]KONDIPARTY K,NIKOLOV A D,WASAN D,et al. Dynamic spreading of nanofluids on solids. Part I:experimental[J]. Langmuir,2012,28(41) :14618-14623. [81]ZHANG H,NIKOLOV A,WASAN D. Dewetting film dynamics inside a capillary using a micellar nanofluid[J]. Langmuir,2014,30(31):9430-9435. [82]HU Z,AZMI S M,RAZA G,et al. Nanoparticle-assisted water-flooding in Berea sandstones[J]. Energy & Fuels,2016,30(4):2791-2804. [83]CHENGARA A,NIKOLOV A D,WASAN D T,et al. Spreading of nanofluids driven by the structural disjoining pressure gradient[J]. Journal of Colloid and Interface Science,2004,280(1):192-201. [84]DI Q F,HUA S,DING W P,et al. Application of support vector machine in drag reduction effect prediction of nanoparticles adsorption method on oil reservoir's micro-channels[J]. Journal of Hydrodynamics,2015,27(1):99-104. [85]陈玉祥,唐佳,陈雅洁. 改性纳米SiO2助剂体系的降压增注机理研究[J]. 化学工程与装备,2016,(1):4-5、12. [86]刘培松. 纳米聚硅材料在低渗致密油藏开采中的应用基础研究[D]. 河南郑州:河南大学,2015. [87]WANG T R,ZHANG Y,LI L,et al. Experimental study on pressure-decreasing performance and mechanism of nanoparticles in low permeability reservoir[J]. Journal of Petroleum Science and Engineering,2018,166:693-703. [88]ZHANG R L,DI Q F,WANG X L,et al. Numerical study of the relationship between apparent slip length and contact angle by Lattice Boltzmann Method[J]. Journal of Hydrodynamics,2012,24(4):535-540. [89]刘高友,郭雄华,程芙蓉,等. 一种纳米级阻聚堵水材料的试验研究[J]. 石油天然气学报,2003,(S2):147-148、10. [90]张德华. 聚硅纳米增注技术在纯梁油区低渗透油田的应用[J]. 内蒙古石油化工,2013,39(10):100-101. [91]陈渊,陈旭,刘卫军. 纳米堵剂在河南油田高压注水井简化管柱上的研究与应用[J]. 特种油气藏,2008,15(1):92-94、98、110. [92]陈渊,孙玉青,李飞鹏,等. 纳米微球深部调驱技术在河南油田的应用[J]. 石油钻采工艺,2012,34(3):87-90. [93]FENG Q,LI N X,HUANG J Z,et al. Case study on the nano-polysilicon materials' depressurisation and injection-increasing technology in offshore Bohaibay Oilfied Kl21-1[C]. Offshore Technology Conference Asia,Kuala Lumpur,Malaysia,2020. [94]ZABALA R,FRANCO C A,CORTÉS F B. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil:a field test[C]. SPE Improved Oil Recovery Conference,Tulsa,Oklahoma,USA,2016. [95]丁玉萍,胡强. 西北油田纳米技术增油增效显著[N/OL].(2019-04-30)[2023-09-28].https://www.cinn.cn/nygy/201904/t20190430_211579.html [96]梁拓,侯吉瑞,屈鸣,等. 2-D纳米黑卡室内评价及缝洞型碳酸盐岩油藏矿场应用[J]. 石油科学通报,2020,5(3):402-411. [97]QU M,LIANG T,HOU J,et al. Laboratory study and field application of amphiphilic molybdenum disulfide nanosheets for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering,2022,208(4):109695. |
[1] | 朱争, 党海龙, 崔鹏兴, 党凯研, 白璞, 赵一凝.
低渗透油藏蓄能增渗压力规律数值模拟
[J]. 新疆石油天然气, 2023, 19(4): 56-62. |
[2] | 李晨泓, 丁英楠, 何秀萍, 钟宝库, 刘子雄. 海上底水锥进气井注氮气复产工艺探索[J]. 新疆石油天然气, 2023, 19(3): 66-71. |
[3] | 朱道义, 施辰扬, 赵岩龙, 陈神根, 曾美婷. 二氧化碳驱化学封窜材料与方法研究进展及应用#br#[J]. 新疆石油天然气, 2023, 19(1): 65-72. |
[4] | 李强, , 王福玲, , 周畅 , 陈佳硕 , 李庆超, , 王彦玲. 硅氧烷类增稠剂对二氧化碳压裂液的性能影响[J]. 新疆石油天然气, 2023, 19(1): 73-80. |
[5] | 张晨阳, 王福焕, 魏华, 张大鹏, 缪长生, 皮秋梅, 罗日升, 顾乔元. “双碳”目标下塔里木油田油气与新能源融合发展实践[J]. 新疆石油天然气, 2022, 18(2): 16-20. |
[6] | 睢芬, 魏宏洋. 缝洞型油藏氮气泡沫辅助气驱技术及应用[J]. 新疆石油天然气, 2020, 16(4): 83-86. |
[7] | 刘斌, 张伟, 宋洪亮, 王欣然, 刘喜林. 聚驱后基于井网优化的二元复合驱提高采收率研究[J]. 新疆石油天然气, 2020, 16(1): 56-60. |
[8] | 程志伟, 胡志刚, 刘欢. 废弃凝析气藏CO2埋存物质平衡方程研究[J]. 新疆石油天然气, 2015, 11(4): 83-86. |
[9] | 高双华, 姚国平, 蔡晓梅, 赵春旭, 王俊仕. 二次聚合物驱提高采收率技术[J]. 新疆石油天然气, 2015, 11(1): 51-54. |
[10] | 陈爱华, 吕秀荣, 于娟, 帕提古丽, 李敏香. 油田内源微生物驱油矿场试验[J]. 新疆石油天然气, 2012, 8(4): 64-67. |
[11] | 仵元兵, 胡丹丹, 常毓文, 刘照伟, 胡松昊. CO2驱提高低渗透油藏采收率的应用现状[J]. 新疆石油天然气, 2010, 6(1): 36-39. |
[12] | 彭通曙, 郑爱萍, 刘洪恩, 赵刚, 侯菊花. 新疆浅层稠油油藏氮气辅助蒸汽吞吐提高采收率研究与应用[J]. 新疆石油天然气, 2009, 5(3): 45-47. |
[13] | 魏纳, 刘安琪, 刘永辉, 刘小平, 冉乙钧, 周祥. 排水采气工艺技术新进展[J]. 新疆石油天然气, 2006, 2(2): 78-81. |
[14] | 沈华, 顾永强. 二元复合驱阶段见效特征[J]. 新疆石油天然气, 2006, 2(1): 59-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||