[1]鄢捷年. 钻井液工艺学[M]. 山东东营:中国石油大学出版社,2012:1-2.
[2]孙万里. 钻井液的使用和钻屑的管理[J]. 油气田环境保护,2013,23(1):55-57、62.
[3]刘魁威,刘霞,邱建君,等. 井楼超浅层大位移水平井钻井液体系[J]. 断块油气田,2008,15(5):88-90.
[4]杨小华,王中华. 国内近15年来油井水泥外加剂研究与应用进展[J]. 油田化学,2004,21(3):290-296.
[5]吴红玲,蒋少军,张新璞,等. 胡麻粗纱煮漂工艺研究[J]. 印染,2004,(10):14-16.
[6]杜冠乐,段凡. 天然高分子在油田钻井液的应用研究[J]. 石油化工应用,2013,32(8):1-4、10.
[7]OUAER H,GARECHE M. Hydroxyethyl cellulose as a rheology modifier for water‑based drilling fluids formulated with Algerian bentonite[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(123).
[8]仇东旭,宋丽,王彦玲,等. 疏水缔合羟乙基纤维素合成及性能研究[J]. 精细石油化工,2013,30(4):9-13.
[9]杨倩云,郭保雨. 钻井液用黏弹性聚合物MVPP的室内合成及性能评价[J]. 钻井液与完井液,2012,29(3):19-22、92.
[10]刘均一,郭保雨,邱维清,等. 纤维素纳米纤维作为钻井液用流型调节剂的应用:中国,CN201711090694.2[P]. 2018-04-24.
[11]LIU C Z,LI M C,MEI C T,et al. Cellulose nanofibers from rapidly microwave-delignified energy cane bagasse and their application in drilling fluids as rheology and filtration modifiers[J]. Industrial Crops & Products,2020,150:112378.
[12]GUO D,YUAN T,SUN Q,et al. Cellulose nanofibrils as rheology modifier and fluid loss additive in water-based drilling fluids:rheological properties,rheological modeling,and filtration mechanisms[J]. Industrial Crops and Products,2023,193:116253.
[13]LI M C,WU Q L,SONG K L,et al. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids[J]. ACS Applied Materials & Interfaces,2015,7(8):5006-5016.
[14]刘国栋. 凝胶型缓释辅料脱支淀粉的制备及其释药行为研究[D]. 江苏无锡:江南大学,2017.
[15]李蔚萍,魏平方,向兴金. 新型增粘剂GFZ的性能评价[J]. 精细石油化工进展,2004,5(10):22-23、26.
[16]DANKWA O K,APPAU O,TAMPURI M. Performance evaluation of local cassava starch flour as a secondary viscosifier and fluid loss agent in water based drilling mud[J].Ghana Mining Journal,2018,18(2):68-76.
[17]钟汉毅,沈广成,邱正松等. 淀粉纳米晶作为钻井液用流型调节剂的应用及钻井液:中国,CN201810179200.6[P]. 2019-03-01.
[18]周鑫浩. 羟丙基瓜尔胶对石英孔隙堵塞伤害研究[D]. 四川成都:西南石油大学,2016.
[19]邱存家,陈礼仪. 植物胶的改性及其在钻探工程中的应用[J]. 成都理工大学学报:自然科学版,2003,30(2):198-201.
[20]冯超,王灿,黄达全,等. 钻井液用有机-无机复合型弱凝胶流型调节剂及其制备方法:中国,CN201410198623 .4[P]. 2016-11-23.
[21]彭双磊,冯雪钢,田剑,等. 国内钻井液增粘剂的研究与应用进展[J]. 广州化工,2012,40(12):10-11、16.
[22]赵向阳,张洁,尤源. 钻井液黄原胶胶液的流变特性研究[J]. 天然气工业,2007,27(3):72-74、154.
[23]田萌. 改性黄原胶和羟丙基交联胍胶过程流变和减阻性能研究[D]. 上海:华东理工大学,2015.
[24]王小金. 黄原胶的化学改性与性能研究[D]. 山东:山东大学,2015.
[25]TAN X,DUAN L,HAN W,et al. A zwitterionic copolymer as rheology modifier and fluid loss agents for water-based drilling fluids[J]. Polymers,2021,13(18):3120.
[26]田发国,李建波,高建林等 .钻井液增粘提切剂YF-01的研制[J]. 精细石油化工进展,2009,10(3):4-8.
[27]周超群,杨淑君,刘浩冰. 一种钻井液流型调节剂及其制备方法:中国,CN201610903728.4[P]. 2019-02-05.
[28]HAMAD B A,HE M,XU M B,et al. A novel amphoteric polymer as a rheology enhancer and fluid-loss control agent for water-based drilling muds at elevated temperatures[J]. ACS Omega,2020,5(15):8483-8495.
[29]AHMAD H M,KAMAL M S,AL-HARTHI M A. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids[J]. Journal of Molecular Liquids,2018,252:133-143.
[30]HUANG Y M,ZHANG D Y,ZHENG W L. Synthetic copolymer(AM/AMPS/DMDAAC/SSS) as rheology modifier and fluid loss additive at HTHP for water‐based drilling fluids[J]. Journal of Applied Polymer Science,2019,136(30):47813.
[31]DAVOODI S,RAMAZANI S A A,SOLEIMANIAN A,et al. Application of a novel acrylamide copolymer containing highly hydrophobic comonomer as filtration control and rheology modifier additive in water-based drilling mud[J]. Journal of Petroleum Science and Engineering,2019,180:747-755.
[32]HUO J H,PENG Z G,YE Z B,et al. Investigation of synthesized polymer on the rheological and filtration performance of water-based drilling fluid system[J]. Journal of Petroleum Science and Engineering,2018,165:655-663.
[33]张麒麟. 国内新型钻井液处理剂研究进展[J]. 钻井液与完井液,2000,17(5):34-38.
[34]沈浩坤,孙金声,吕开河,等. 水基钻井液有机处理剂智能化研究进展与应用展望[J]. 油田化学,2022,39(1):155-162.
[35]吕开河,王中义,黄贤斌,等. 适用于深水水基钻井液的温敏聚合物流型调节剂[J]. 钻井液与完井液,2021,38(1):14-20.
[36]WANG Z,SUN J,ZHANG K,et al. A temperature-sensitive polymeric rheology modifier used in water-based drilling fluid for deepwater drilling[J]. Gels,2022,8(6):338.
[37]陈亮,由福昌,周书胜,等. 深水恒流变无固相储层钻井液的制备与性能评价[J/OL]. 油田化学:1-8.http://kns.cnki.net/kcms/detail/51.1292.TE.20221110.1936.004.html.
[38]谢玉洪,董星亮,张勇,等. 一种抗高温、抗高盐浓度盐流型调节剂及其制备方法:中国,CN201510509849 .6[P]. 2017-07-28.
[39]张领宇,蒋官澄,安玉秀. 钻井液用超分子增黏提切剂-ZJA的研发与评价[J]. 现代化工,2016,36(1):131-135.
[40]JIANG C Y,YU B,MA Q S,et al. Crosslinked polymers as “smart” viscosifiers used in hostile environments[J]. Journal of Petroleum Science and Engineering,2019,173:1332-1339.
[41]刘业文. 无膨润土相水基钻井液用抗温流型调节剂研究与应用[J]. 钻采工艺,2022,45(4):154-159.
[42]YAN L L,WANG C B,XU B,et al. Preparation of a novel amphiphilic comb-like terpolymer as viscosifying additive in low-solid drilling fluid[J]. Materials Letters,2013,105:232-235.
[43]黄孟,许林,许洁,等. 水基恒流变钻井液流型调节剂的制备与性能评价[J]. 油田化学,2018,35(2):191-196、202.
[44]LUO Z H,WANG L X,PEI J J,et al. A novel star-shaped copolymer as a rheology modifier in water-based drilling fluids[J]. Journal of Petroleum Science and Engineering,2018,168:98-106.
[45]孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报:自然科学版,2019,43(5):73-81.
[46]宋茂生. 分散聚合法丙烯酰胺—甲基丙烯酸十八酯—苯乙烯磺酸钠疏水缔合聚合物的研究[D]. 四川成都:成都理工大学,2013.
[47]谢彬强. 深部潜山储层钻井液高温增粘剂及作用机理研究[D]. 山东青岛:中国石油大学(华东),2013.
[48]谢彬强,邱正松,郑力会. 水基钻井液用抗高温聚合物增黏剂的研制及作用机理[J]. 西安石油大学学报:自然科学版,2016,31(1):96-102.
[49]XIE B Q,TING L,ZHANG Y,et al. Rheological properties of bentonite-free water-based drilling fluids with novel polymer viscosifier[J]. Journal of Petroleum Science and Engineering,2018,164:302-310.
[50]XIE B Q,LIU X D. Thermo-thickening behavior of LCST-based copolymer viscosifier for water-based drilling fluids[J]. Journal of Petroleum Science and Engineering,2017,154:244-251.
[51]XIE B Q,LIU X D,WANG H Q,et al. Synthesis and application of sodium 2-acrylamido-2-methylpropane sulphonate/N-vinylcaprolactam/divinyl benzene as a high performance viscosifier in water-based drilling fluid[J]. Journal of Applied Polymer Science,2016,133(43):44140.
[52]褚奇,石秉忠,李涛,等. 水基钻井液用低增黏提切剂的合成与性能评价[J]. 钻井液与完井液,2019,36(6):689-693.
[53]CHU Q,LIN L. Synthesis and properties of an improved agent with restricted viscosity and shearing strength in water-based drilling fluid[J]. Journal of Petroleum Science and Engineering,2019,173(2):1254-1263.
[54]ZHANG X M,JIANG G C,XUAN T,et al. Associating copolymer acrylamide/diallyldimethylammonium chloride/butyl- acrylate/2-acrylamido-2-methylpropanesulfonic acid as a tackifier in clay-free and water-based drilling fluids[J]. Energy Fuels,2017,31:4655-4662.
[55]YE L,LUO K F,HUANG R H. A study on P(AM-DMDA) hydrophobically associating water-soluble copolymer[J]. European Polymer Journal,2000,36(8):1711-1715.
[56]GAO B J,JIANG L D,LIU K K. Microstructure and association property of hydrophobically modified polyacrylamide of a new family[J]. European Polymer Journal,2007,43(10):4530-4540.
[57]REGALADO E J,SELB J,CANDAU F. Viscoelastic behavior of semidilute solutions of multisticker polymer chains[J]. Macromolecules. 1999,32:8580-8588.
[58]YAMAMOTO H,TOMATSU I,HASHIDZUME A,et al. Associative properties in water of copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylamides substituted with alkyl groups of varying lengths[J]. Macromolecules,2000,33(21):7852-7861.
[59]GHADERI S,RAMAZANI S A A,HADDADI S A. Applications of highly salt and highly temperature resistance terpolymer of acrylamide/styrene/maleic anhydride monomers as a rheological modifier:rheological and corrosion protection properties studies[J]. Journal of Molecular Liquids,2019,294(15):111635.
[60]闫丽丽. 抗温抗饱和盐聚合物钻井液降滤失增粘剂的研制及应用[D]. 北京:中国地质大学(北京),2013.
[61]罗源皓,林凌,郭拥军,等. 纳米材料在抗高温钻井液中的应用进展[J]. 化工进展,2022,41(9):4895-4906.
[62]AFTAB A,ISMAIL A R,IBUPOTO Z H. Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica,multi-walled carbon nanotube,and graphene nanoplatelet[J]. Egyptian Journal of Petroleum,2016,26(2):291-299.
[63]DEJTARADON P,HAMIDI H,CHUKS M H,et al. Impact of ZnO and CuO nanoparticles on the rheological and filtration properties of water-based drilling fluid[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,570(5):354-367.
[64]BAYAT A E,MOGHANLOO P J,PIROOZIAN A,et al. Experimental investigation of rheological and filtration properties of water-based drilling fluids in presence of various nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,555(20):256-263.
[65]KUMAR R S,SHARMA T. Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,539(20):171-183.
[66]XIONG Z Q,LI X D,FU F,et al. Performance evaluation of laponite as a mud-making material for drilling fluids[J]. Petroleum Science,2019,16(4):890-900.
[67]WANG K,JIANG G C,LIU F,et al. Magnesium aluminum silicate nanoparticles as a high-performance rheological modifier in water-based drilling fluids[J]. Applied Clay Science,2018,161(1):427-435.
[68]MAO H,QIU Z S,SHEN Z H,et al. Novel hydrophobic associated polymer based nano-silica composite with core-shell structure for intelligent drilling fluid under ultra-high temperature and ultra-high pressure[J].Progress in Natural Science:Materials International,2015,25(1):90-93.
[69]毛惠,邱正松,沈忠厚,等. 两亲嵌段疏水缔合聚合物基纳米SiO2的合成及溶液特性[J]. 高分子材料科学与工程,2015,31(1):7-12.
[70]WANG Z H,WU Y P,LUO P Y,et al. Poly(sodium p-styrene sulfonate) modified Fe3O4 nanoparticles as effective additives in water-based drilling fluids[J]. Journal of Petroleum Science and Engineering,2018,165:786-797.
[71]KAMALI F,SABOORI R,SABBAGHI S. Fe3O4-CMC nanocomposite performance evaluation as rheology modifier and fluid loss control characteristic additives in water-based drilling fluid[J]. Journal of Petroleum Science and Engineering,2021,205:108912.
[72]OSEH J O,NORDDIN M N A,ISMAIL I,et al. A novel approach to enhance rheological and filtration properties of water-based mud using polypropylene-silica nanocomposite[J]. Journal of Petroleum Science and Engineering,2019,181:106264.
[73]XIE B,CHEN J D,CHEN J,et al. Novel thermo-associating polymer/silica nanocomposite as a temperature-resistant rheology modifier for bentonite-free water-based drilling fluids[J]. Geoenergy Science and Engineering,2023,222:211426.
[74]HUANG X,LV K,SUN J,et al. Enhancement of thermal stability of drilling fluid using laponite nanoparticles under extreme temperature conditions[J]. Materials Letters,2019,248:146-149.
[75]YANG J,SUN J,WANG R,et al. Laponite-polymer composite as a rheology modifier and filtration loss reducer for water-based drilling fluids at high temperature[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,655:130261.
[76]SHEN H,LV K,HUANG X,et al. Hydrophobic‐associated polymer‐based laponite nanolayered silicate composite as filtrate reducer for water‐based drilling fluid at high temperature[J]. Journal of Applied Polymer Science,2020,137(18):48608.
|