[1]孙金声,白英睿,程荣超,等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638.SUN J S,BAI Y R,CHENG R C,et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development,2021,48(3):630-638.
[2]房超,张辉,陈朝伟,等. 地质工程一体化漏失机理与预防措施——以塔里木库车山前古近系复合盐层为例[J]. 石油钻采工艺,2022,44(6):684-692.FANG C,ZHANG H,CHEN Z W,et al. Geology-engineering integrated investigation of leakoff mechanisms and prevention measures:A case study of the Palaeogene composite salt layer in the Kuqa piedmont zone,Tarim Basin[J]. Oil Drilling & Production Technology,2022,44(6):684-692.
[3]尹达,刘锋报,康毅力,等. 库车山前盐膏层钻井液漏失成因类型判定[J]. 钻采工艺,2019,42(5):121-123.YIN D,LIU F B,KANG Y L,et al. Determination of the causes of drilling fluid loss in the salt gypsum layer in the Kuqa piedmont[J]. Drilling & Production Technology,2019,42(5):121-123.
[4]王涛,刘锋报,罗威,等. 塔里木油田防漏堵漏技术进展与发展建议[J]. 石油钻探技术,2021,49(1):28-33.WANG T,LIU F B,LUO W,et al. The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim Oilfield [J]. Petroleum Drilling Techniques,2021,49(1):28-33.
[5]尹达,叶艳,李磊,等. 塔里木山前构造克深7井盐间高压盐水处理技术[J]. 钻井液与完井液,2012,29(5):6-8、95.YIN D,YE Y,LI L,et al. High pressure salt water treatment technology of well Keshen7 in foothill structural zone of Tarim[J]. Drilling Fluid & Completion Fluid,2012,29(5):6-8,95.
[6]刘均一,邱正松,罗洋,等. 油基钻井液随钻防漏技术实验研究[J]. 钻井液与完井液,2015,32(5):10-14、101.LIU J Y,QIU Z S,LUO Y,et al. Study on lost circulation prevention while drilling using oil based drilling fluid[J]. Drilling Fluid & Completion Fluid,2015,32(5):10-14,101.
[7]马川. 裂缝漏层堵漏钻井液研究[D]. 四川成都:西南石油大学,2018.MA C. Study on drilling fluids for fractured thief zone plugging[D]. Chengdu,Sichuan:Southwest Petroleum University,2018.
[8]沈浩坤,孙金声,吕开河,等. 水基钻井液有机处理剂智能化研究进展与应用展望[J]. 油田化学,2022,39(1):155-162.SHEN H K,SUN J S,LYU K H,et al. Research progress and application prospects of intelligent organic treatment agent for water-based drilling fluid[J]. Oilfield Chemistry,2022,39(1):155-162.
[9]匡立春,刘合,任义丽,等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发,2021,48(1):1-11.KUANG L C,LIU H,REN Y L,et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development,2021,48(1):1-11.
[10]李雨,侯磊,徐磊,等. 基于混合BP神经网络的原油管道电耗预测研究[J]. 石油化工高等学校学报,2022,35(2):68-73.LI Y,HOU L,XU L,et al. Power consumption prediction method for crude oil pipeline based on hybrid BP neural network[J].Journal of Petrochemical Universities,2022,35(2):68-73.
[11]李宁,徐彬森,武宏亮,等. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报,2021,42(4):508-522.LI N,XU B S,WU H L,et al. Application status and prospects of artificial intelligence in well logging and formation evaluation[J]. Acta Petrolei Sinica,2021,42(4):508-522.
[12]耿黎东. 钻完井大数据特点与应用方案研究[J]. 石油钻采工艺,2022,44(1):89-96.GENG L D. Study on characteristics and application scheme of big data in drilling and completion[J]. Oil Drilling & Production Technology,2022,44(1):89-96.
[13]王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,41(4):505-512.WANG M S,GUANG X J. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica,2020,41(4):505-512.
[14]孙金声,刘凡,程荣超,等. 机器学习在防漏堵漏中研究进展与展望[J]. 石油学报,2022,43(1):91-100.SUN J S,LIU F,CHENG R C,et al. Research progress and prospects of machine learning in lost circulation control[J]. Acta Petrolei Sinica,2022,43(1):91-100.
[15]REEDY K,POPA A S,CASSIDY S D. Remediation solutions for lost circulation using case based reasoning[C]. SPE Western Regional Meeting,Garden Grove,California,USA,2018.
[16]ALKINANI H H,AL-HAMEEDI A T T,DUNN-NORMAN S. Minimizing lost circulation non-productive time using expected monetary value and decision tree analysis[C]. SPE Western Regional Meeting,2021.
[17]ABBAS A K,HAMED H M,AL-BAZZAZ W,et al. Predicting the amount of lost circulation while drilling using artificial neural networks:An example of southern Iraq oil fields[C]. SPE Gas & Oil Technology Showcase and Conference,Dubai,UAE,2019.
[18]ABBAS A K,BASHIKH A A,ABBAS H,et al. Intelligent decisions to stop or mitigate lost circulation based on machine learning[J]. Energy,2019,183:1104-1113.
[19]尹达,胥志雄,徐同台,等. 库车山前深井钻完井液技术[M]. 北京:石油工业出版社,2020.YIN D,XU Z X,XU T T,et al. Deep well drilling and completion fluid technology applied in Kuqa piedmont[M]. Beijing:Petroleum Industry Press,2020.
[20]李宁,李龙,王涛,等. 库车山前盐膏层与目的层漏失机理分析与治漏措施研究[J]. 广州化工,2020,4(11):101-103.LI N,LI L,WANG T,et al. The study of lost circulation mechanism and plugging measures of gypsum-salt formations and target zones in the kuqa piedmont[J]. Guangzhou Chemical Industry,2020,4(11):101-103.
[21]桑应宾. 基于K近邻的分类算法研究[D]. 重庆:重庆大学,2009.SANG Y B. Study on classification algorithms based on K-nearest neighbor[D]. Chongqing:Chongqing University,2009.
[22]丁世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(1):2-10.DING S F,QI B J,TAN H Y. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China,2011,40(1):2-10.
[23]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.ZHOU F Y,JIN L P,DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251.
[24]陈果. 基于遗传算法的支持向量机分类器模型参数优化[J]. 机械科学与技术,2007,26(3):347-350.CHEN G. Optimizing the parameters of support vector machine’s classifier model based on genetic algorithm[J]. Mechanical Science and Technology,2007,26(3):347-350.
[25]李宏波,罗平亚,白杨,等. 机器学习算法概述及其在钻井工程中的应用[J]. 新疆石油天然气,2022,18(1):1-13.LI H B,LUO P Y,BAI Y,et al. An overview of machine learning algorithms and their application in drilling engineering[J]. Xinjiang Oil & Gas,2022,18(1):1-13.
[26]方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32-38.FANG K N,WU J B,ZHU J P,et al. A review of technologies on random forests[J]. Journal of Statistics and Information,2011,26(3):32-38.
[27]龙艳芳. 基于极限随机树集成的短时交通流预测模型研究[D]. 湖南长沙:湖南大学,2017.LONG Y F. Study on short-term traffic flow prediction model based on extremely randomized trees integration[D]. Changsha,Hunan:Hunan University,2017.
[28]史加荣,王丹,尚凡华,等. 随机梯度下降算法研究进展[J]. 自动化学报,2021,47(9):2103-2119.SHI J R,WANG D,SHANG F H,et al. Research advances in stochastic gradient descent algorithms[J]. Acta Automatica Sinica,2021,47(9):2103-2119.
[29]曹莹,苗启广,刘家辰等. AdaBoost算法研究进展与展望[J]. 自动化学报,2013,39(6):745-758.CAO Y,MIAO Q G,LIU J C,et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica,2013,39(6):745-758
[30]赵劲松,王梓齐,刘长良. 基于Bagging集成策略和多元状态估计的风电机组齿轮箱状态监测[J]. 科学技术与工程,2020,20(20):8180-8186.ZHAO J S,WANG Z Q,LIU C L. Wind turbine gearbox condition monitoring based on Bagging ensemble strategy and multivariate state estimate technique[J].Science Technology and Engineering,2020,20(20):8180-8186.
|