[1]王颖颖,庄毅,孙逸帆. 基于粒子群优化BP神经网络的可靠性评估模型[J]. 计算机与现代化,2022,(12):42-49.WANG Y Y,ZHUANG Y,SUN Y F. Reliability evaluation model of BP neural network based on particle swarm optimization[J]. Computer and Modernization,2022,(12):42-49.
[2]孔祥伟,陈昊,叶佳杰,等. 基于PCA预测岩石可钻性级值的钻头优选[J]. 新疆石油天然气,2022,18(3):6-11.KONG X W,CHEN H,YE J J,et al. Bit selection based on PCA to predict drillability level of hard rocks[J] Xinjiang Oil & Gas,2022,18(3):6-11.
[3]胡宗敏,张立刚,罗光东,等. 基于元素录井的深层火成岩抗钻特性评价[J]. 录井工程,2023,34(1):24-28.HU Z M, ZHANG L G, LUO G D, et al. Evaluation of anti-drilling properties of deep igneous rocks based on element logging[J]. Mud Logging Engineering, 2023,34(1):24-28.
[4]CAGNATO C,NLEND P,NGOUOH F,et al. Analysis of early Iron Age (2500 BP) and modern period (150 BP) starch grains in Western Central Africa[J]. Scientific Reports,2022,12(1):18956.
[5]史晓亮,段隆臣,王蕾,等. 微钻法进行岩石可钻性分级[J]. 金刚石与磨料磨具工程,2002,42(3):32-34.SHI X L,DUAN L C,WANG L,et al. Classification of rock drillability using micro drilling method[J]. Diamond and Abrasive Engineering,2002,42(3):32-34.
[6]ANDREWS R,HARELAND G,NYGAARD R,et al. Methods of using logs to quantify drillability[C]. Rocky Mountain Oil & Gas Technology Symposium,Denver,Colorado,USA,April 2007.
[7]王亚飞,张占荣,刘华吉,等. 基于模型融合的钻进参数识别岩石类型研究[J] 钻探工程,2023,50(2):17-25.WANG Y F,ZHANG Z R,LIU H J,et al. Data⁃driven model for the identification of the rock type by drilling data[J]. Drilling Engineering,2023,50(2):17-25.
[8]MA H,WANG Y J. Formation drillability prediction based on PSO-SVM[C]. IEEE 10th International Conference on Signal Processing,2010:2497-2500.
[9]MA H. Formation drillability prediction based on multi-source information fusion[J]. Journal of Petroleum Science and Engineering. 2011,78 (2):438-446.
[10]OLORUNTOBI O,BUTT S. Application of specific energy for lithology identification[J]. Journal of Petroleum Science and Engineering,2020,184:106402.
[11]张辉,高德利. 钻头下部未钻开地层的可钻性预测新方法[J]. 石油学报,2006,27(1):97-100.ZHANG H,GAO D L. A new method for predicting the drillability of un-drilled formation[J]. Acta Petrolei Sinica,2006,27(1):97-100
[12]SAEIDI O,TORABI S R,ATAEI M,et al. Development of a new index to assess the rock mass drillability[J]. Geotechnical and Geological Engineering,2013,31(5):1477-1495.
[13]GAN C,CAO W H,WU M,et al. Intelligent Nadaboost-ELM modeling method for formation drillability using well logging data[J]. Journal of Advanced. Computational Intelligence and Intelligent Informatics,2016,20(7):1103-1111.
[14]董青青,梁小丛. 基于优化的BP神经网络地层可钻性预测模型[J]. 探矿工程(岩土钻掘工程),2012,39(11):26-28.DONG Q Q,LIANG X C. A model for predicting formation drillability based on optimized BP neural network[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2012,39 (11):26-28.
[15]杜宇,潘遥. 基于GA-BP神经网络岩石可钻性预测模型[J]. 科学技术创新,2020,(25):57-59.DU Y,PAN Y. Rock drillability prediction model based on GA-BP neural network[J]. Scientific and Technological Innovation,2020,(25):57-59.
[16]FANG X X,FENG H,WANG H. Study on intelligent prediction method of rock drillability based on Bayesian lithology classification and optimized BP neural network[J]. Petroleum Science and Technology,2022,40(17):2141-2162.
[17]蒲先渤,李泽群,尹飞,等. 基于PCA-LM-BP神经网络的岩石可钻性预测研究[J]. 钻探工程,2023,50(6):63-68.PU X B,LI Z Q,YIN F,et al. Research on rock drillability prediction based on PCA-LM-BP neural network[J]. Drilling Engineering,2023,50(6):63-68.
[18]HE M M,ZHANG Z Q,REN J,et al. Deep convolutional neural network for fast determination of the rock strength parameters using drilling data[J]. International Journal of Rock Mechanics and Mining Sciences,2019,123:104084.
[19]HE M M,LI N,ZHU J W,et al. Advanced prediction for field strength parameters of rock using drilling operational data from impregnated diamond bit[J]. Journal of Petroleum Science and Engineering,2020,187:106847.
[20]甘超. 复杂地层可钻性场智能建模与钻速优化[D]. 湖北武汉:中国地质大学,2019.GAN C. Intelligent modeling and drilling speed optimization of complex formation drillability field[D]. Wuhan,Hubei:China University of Geosciences,2019.
[21]XU R,WUNSCH D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks,2005,16(3):645-678.
[22]张文博,冯梅,李青. 分类和聚类算法在油气领域的应用研究[J]. 信息系统工程,2022(9):59-62.ZHANG W B,FENG M,LI Q. Research on application of classification and clustering algorithms in the field of oil and gas[J]. China CIO News,2022 (9):59-62.
[23]KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE,1990,78(9):1464-1480.
[24]李根,杨剑征,刘祺. 基于SOM-BP神经网络的船舶柴油机故障诊断方法[J]. 舰船科学技术,2023,45(22):121-125.LI G,YANG J Z,LIU Q. Marine diesel engine fault diagnosis method based on SOM-BP neural network[J] Ship Science and Technology,2023,45 (22):121-125.
[25]郭昊天,张超越,郑新潮,等. 基于SOM-BiGRU串联神经网络的电费收入预测研究[C]. 吉林省电机工程学会. 吉林省电机工程学会2023年学术年会获奖论文集. 国网延边供电公司;国网吉林供电公司,2023:9.GUO H T,ZHANG C Y,ZHENG X C,et al. Research on electricity revenue prediction based on SOM-BiGRU series neural network[C]. 2023 Academic Annual Conference of Jilin Electric Engineering Society,State Grid Yanbian Power Supply Company;State Grid Jilin Power Supply Company,2023:9.
|