[1]李阳,赵清民,薛兆杰. “双碳”目标下二氧化碳捕集、利用与封存技术及产业化发展路径[J]. 石油钻采工艺,2023,45(6):655-660.LI Y,ZHAO Q M,XUE Z J. Carbon dioxide capture,utilization and storage technology and industrialization development path under the dual carbon goal[J]. Oil Drilling & Production Technology,2023,45(6):655-660.
[2]胡其会,李玉星,张建,等.“双碳”战略下中国 CCUS 技术现状及发展建议[J].油气储运,2022,41(4):361-371.HU Q H,LI Y X,ZHANG J,et al. Current status and development suggestions of CCUS technology in China under the "Double Carbon" strategy[J]. Oil & Gas Storage and Transportation,2022,41(4):361-371.
[3]程万洲,王巨洪,王学力,等.我国智慧管道建设现状及关键技术探讨[J]. 石油科技论坛,2018,37(3):34-40.CHENG W Z,WANG J H,WANG X L,et al. Present conditions of China’s intelligent pipelines construction and key technologies[J]. Petroleum Science and Technology Forum,2018,37(3):34-40.
[4]沈惠良.基于BIM技术的智慧管网运维解决方案[J]. 住宅与房地产,2021,3(22):161-162. SHEN H L. A smart pipeline network operation and maintenance solution based on BIM technology[J]. Housing and Real Estate,2021,3(22):161-162.
[5]钱建华,牛彻,杜威.管道智能化管理的发展趋势及展望[J].油气储运,2021,40(2):121-130.QIAN J H,NIU C,DU W. Development trend and prospect of intelligent pipeline management[J]. Oil & Gas Storage and Transportation,2021,40(2):121-130.
[6]李柏松,王学力,徐波,等.国内外油气管道运行管理现状与智能化趋势[J].油气储运,2019,38(3):241-250.LI B S,WANG X L,XU B,et al. Operation and management status and intelligentization trend of global oil and gas pipelines[J]. Oil & Gas Storage and Transportation,2019,38(3):241-250.
[7]DNV GL Group. SNAM looks to data science for improved gas transport[EB/OL]. (2017-06-28)[2018-06-20]. https://ers.dnvgl.com/oilgas/perspectives/snam-looks-to-data-science-forimproved-gas-transport.htm.
[8]税碧垣,张栋,李莉,等. 智慧管网主要特征与建设构想[J].油气储运2020,39(5):500-505.SHUI B Y,ZHANG D,LI L,et al. Main characteristics and construction conception of intelligent pipeline network[J]. Oil & Gas Storage and Transportation,2020,39(5):500-505.
[9]URAIKUL V,CHAN C W,TONTIWACHWUTHIKUL P. Development of an expert system for optimizing natural gas pipeline operations[J]. Expert Systems with Applications,2000,18(4):271-282.
[10]王现中.基于风险管理的长输成品油管道管理体系构建与实践[J].石油化工高等学校学报,2021,34(5):91-96.WANG X Z.Construction and practice of long‐distance product oil pipeline management system based on risk management[J].Journal of Petrochemical Universities,2021,34(5):91-96.
[11]吴长春,左丽丽.关于中国智慧管道发展的认识与思考[J].油气储运,2020,39(4):361-370.WU C C,ZUO L L. Understanding and thinking on the development of China’s intelligent pipeline[J]. Oil & Gas Storage and Transportation,2020,39(4):361-370.
[12]王振声,陈朋超,王巨洪.中俄东线天然气管道智能化关键技术创新与思考[J].油气储运,2020,39(7):730-739.WANG Z S,CHEN P C,WANG J H. Key technological innovations and thinking of pipeline intelligence in China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2020,39(7):730-739.
[13]宫敬,于达.国家管网公司旗下成品油管道运营模式探讨[J].辽宁石油化工大学学报,2020,40(4):87-91.GONG J,YU D.To our country products pipeline construction of what time thinking[J]. Journal of Liaoning Petrochemical University,2020,40(4):87-91.
[14]曹闯明,黄亦星,刘荣,等.中国海油一体化企业智慧管理平台建设[J].油气储运,2018,37(7):741-750.CAO C M,HUANG Y X,LIU R,et al. Construction of integrated smart enterprise management platform in CNOOC[J]. Oil & Gas Storage and Transportation,2018,37(7):741-750.
[15]丛轶颖. CO2管道输送技术研究[J].当代石油石化,2023,31(10):35-39. CONG Y Y. Research on CO2 pipeline transportation technology[J]. Petroleum & Petrochemical Today,2023,31(10):35-39.
[16]陆诗建,张娟娟,杨菲,等.CO2管道输送技术进展与未来发展浅析[J].南京大学学报:自然科学,2022,58(6):944-952. LU S J,ZHANG J J,YANG F,et al. Progress and future development trend of CO2 pipeline transportation technology[J]. Journal of Nanjing University (Natural Science),2022,58(6):944-952.
[17]NESIC S,LEE J,RUZIC V. A mechanistic model of iron carbonate film growth and the effect on CO2 corrosion of mild steel[C]. CORROSION 2002,Denver,Colorado:NACE-02237.
[18]郭晓璐,喻健良,闫兴清,等.超临界CO2管道泄漏特性研究进展[J].化工学报,2020,71(12):5340-5442.GUO X L,YU J L,YAN X Q,et al. Research progress on leakage characteristics of supercritical CO2 pipeline[J]. CIESC Journal,2020,71(12):5340-5442.
[19]TENG L,LI Y X,HU Q H,et al. Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases[J]. Energy,2018,157:806-814.
[20]TENG L,LI Y X,ZHANG D T,et al. Evolution and size distribution of solid CO2 particles in supercritical CO2 releases[J]. Industrial & Engineering Chemistry Research,2018,57(22):7655-7663.
[21]胡永乐,吕文峰,杨永智,等.二氧化碳驱油与埋存技术及实践[M].第1版.北京:石油工业出版社,2023:50-52.HU Y L,LV W F,YANG Y Z,et al. Carbon dioxide oil displacement and sequestration technology and practice[M]. 1st Edition. Beijing:Petroleum Industry Press,2023:50-52.
[22]郑度奎,胡晨章,蒲月华.基于人工神经网络的油气管道CO2 腐蚀速率预测研究进展[J].热加工工艺,2021,50(18):25-31. ZHENG D K,HU C Z,PU Y H. Research progress in prediction of CO2 corrosion rate of oil and gas pipeline based on artificial neural network[J]. Hot Working Technology,2021,50(18):25-31.
[23]马海,范光第. 基于BP神经网络模型的随钻测井曲线预测[J]. 录井工程,2023,34(2):22-27.MA H,FAN G D. Prediction of LWD curves based on BP neural network model[J]. Mud Logging Engineering,2023,34(2):22-27.
[24]TRASATTI S P. The contribution of neural networks to solve corrosion related problems[J]. Advanced Materials Research,2010,95:23-27.
[25]张文颖,袁胜斌,陈伟,等. BP神经网络模型在元素-矿物转换中的应用[J]. 录井工程,2023,34(3):1-6.ZHANG W Y,YUAN S B,CHEN W,et al. Application of BP neural network model in element-mineral conversion[J]. Mud Logging Engineering,2023,34(3):1-6.
[26]万里平,徐友红,冯兆阳,等.基于遗传算法优化BP神经网络预测CO2/H2S环境中套管钢的腐蚀速率[J].腐蚀与防护,2017,38(9):727-736.WANG L P,XU Y H,FEN Z Y,et al. Application of genetic algorithms BP neural networks to predicting corrosion rate of carbon steel in CO2/H2S environment[J]. Corrosion & Protection,2017,38(9):727-736.
[27]刘钊,曹斌.基于Niche GA的BP神经网络评价天然气集输管道腐蚀[J].化学工程与装备2011,(9):28-30. LIU Z,CAO B. BP neural network evaluation of natural gas gathering and transportation pipeline corrosion based on Niche GA[J]. Chemical Engineering & Equipment,2011,(9):28-30.
[28]陈柚州,任涛,邓朋,等.基于人工蜂群优化小波神经网络的隧道沉降预测[J].现代隧道技术,2019,56(4):56-61.CHEN Y Z,REN T,DENG P,et al. Prediction of tunnel settlements by optimized wavelet neural network based on ABC[J]. Modern Tunnelling Technology,2019,56(4):56-61.
[29]郑俊褒,饶珊珊.改进蛙跳算法的小波神经网络短时交通流预测[J].软件导刊,2019,19(4):50-54.ZHENG J B,RAO S S. Short-term traffic flow prediction of wavelet neural network based on the improved shuffled flog leaping algorithm[J]. Software Guide,2020,19(4):50-54.
[30]陈翀.智能建模方法在埋地油气管道腐蚀速率预测中的应用[D].福建福州:福州大学,2016.CHEN C. Application of intelligent modeling methods in prediction of buried pipeline corrosion rate[D]. Fuzhou,Fujian:Fuzhou University,2016.
[31]骆正山,王文辉,王小完,等.基于RS-PSO-GRNN的埋地管道土壤腐蚀预测[J].材料保护,2018,51(8):47-53.LUO Z S,WANG W H,WANG X W,et al. Soil corrosion prediction of buried pipeline based on the model of RS-PSO-GRNN[J]. Materials Protection,2018,51(8):47-53.
[32]徐湃.燃气管道泄漏定位于报警系统研究[D].重庆:重庆大学,2011.XU P. Study on gas pipeline leakage location and warning system[D]. Chongqing:Chongqing University,2011.
[33]HO M,EL-BORGI S,PATIL D,et al. Inspection and monitoring systems subsea pipelines:A review paper[J]. Structural Health Monitoring,2020,19(2):606‒645.
[34]李宏波,罗平亚,白杨,等.机器学习算法概述及其在钻井工程中的应用[J].新疆石油天然气,2022,18(1):1-13.LI H B,LUO P Y,BAI Y,et al. Summary for machine learning algorithms and their applications in drilling engineering[J]. Xinjiang Oil & Gas,2022,18(1):1-13.
[35]陈哲,罗涛,刘敏,等.城市燃气管道泄漏定位技术综述[J].煤气与热力,2023,43(9):36-39.CHEN Z,LUO T,LIU M,et al. Review of leakage location technologies of urban gas pipeline[J]. Gas & Heat,2023,43(9):36-39.
[36]杨杰,王桂增.输气管道泄漏诊断技术综述[J].化工自动化及仪表,2004,31(3):1-5.YANG J,WANG G Z. Leak detection and location methods for gas transport pipelines[J]. Control and Instruments in Chemical Industry,2004,31(3):1-5.
[37]王阳.基于次声波的供热管道泄漏监测方法研究及应用[D].山东青岛:青岛大学,2023.WANG Y. Research and application of infrasound-based monitoring method for heat supply pipeline leakage[D]. Qingdao,Shandong:Qingdao University,2023.
[38]ZHANG M,GAO L,ZHANG X,et al. An infrasound source localisation algorithm for improving location accuracy of gas pipeline leakage detection system[J]. International Journal of Embedded Systems,2022,15(1):9-18.
[39]CHEN Q,SHEN G D,JIANG J C,et al. Effect of rubber washers on leak location for assembled pressurized liquid pipeline based on negative pressure wave method[J]. Process Safety and Environmental Protection,2018,119:181-190.
[40]DATTA S,SARKAR S. A review on different pipeline fault detection methods[J]. Journal of Loss Prevention in the Process Industries,2016,41:97-106.
[41]王子明,李清平,李姜辉,等.海洋CO2管道输送技术现状与展望[J].中国工程科学,2024,26(2):74-91.WANG Z M,LI Q P,LI J H,et al. Current status and outlook of offshore CO2 pipeline transportation technologies[J]. Strategic Study of CAE,2024,26(2):74-91.
[42]熊小琴,杨君,程猛猛,等.原油输配系统优化及应用[J].新疆石油天然气,2021,17(3):74-78.XIONG X Q,YANG J,CHENG M M,et al. Optimization and application of crude oil transportation and distribution system[J]. Xinjiang Oil & Gas,2021,17(3):74-78.
[43]李骆灵,李义常,魏立尧.元宇宙技术群与量子计算赋能CCUS研究现状及趋势[J].新疆石油天然气,2023,19(3):86-93.LUO L,L Y C,WEI L Y. Use of Metaverse technology clusters and quantum computing in CCUS:research status and trends[J]. Xinjiang Oil & Gas,2023,19(3):86-93.
[44]樊玉新,李泓洲,段胜男,等.太阳能高温光热技术赋能浅层超稠油低碳开发[J].新疆石油天然气,2023,19(4):82-87.FAN Y X,LI H Z,DUAN S N,et al. Concentrated solar steam generation technology enables low carbon shallow super-heavy oil production[J]. Xinjiang Oil & Gas,2023,19(4):82-87.
[45]祝守丽,祁明业,黄波,等.克—独反输管线运行优化研究[J].新疆石油天然气,2021,17(2):82-87. ZHU S L,QI M Y,HUANG B,et al. Study on operation optimization of KARAMAY- DUSHANZI reverse oil pipeline[J]. Xinjiang Oil & Gas,2021,17(2):82-87.
|