[1]LI G,SONG X,TIAN S,et al. Intelligent drilling and completion:A review[J]. Engineering,2022,18:33-48.
[2]陈韬,张幼振,许超. 煤矿井下钻进工况智能识别算法研究与应用[J]. 煤矿安全,2025,56(3):242-249.CHEN Tao,ZHANG Youzhen,XU Chao. Research and application of intelligent identification algorithm for drilling conditions in coal mine underground[J]. Safety in Coal Mines,2025,56(3):242-249.
[3]SIRUVURI C,NAGARAKANTI S,SAMUEL R. Stuck pipe prediction and avoidance:A convolutional neural network approach[C]. IADC/SPE Drilling Conference,Miami,Florida,USA,2006:SPE 98378-MS.
[4]CHAMKALANI A,PORDEL SHAHRI M,POORDAD S. Support vector machine model:A new methodology for stuck pipe prediction[C]. SPE Unconventional Gas Conference and Exhibition,Muscat,Oman,2013:SPE 164003-MS.
[5]AHMED O S,AMAN B M,ZAHRANI M A,et al. Stuck pipe early warning system utilizing moving window machine learning approach[C]. Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi,UAE,2019:SPE 197674-MS.
[6]AL-BAIYAT I,HEINZE L. Implementing artificial neural networks and support vector machines in stuck pipe prediction[C]. SPE Kuwait International Petroleum Conference and Exhibition,Kuwait,2012:SPE 163370-MS.
[7]ABBAS A K,ALMUBARAK H,ABBAS H,et al. Application of machine learning approach for intelligent prediction of pipe sticking[C]. Abu Dhabi International Petroleum Exhibition and Conference,Abu Dhabi,UAE,2019:SPE 197396-MS.
[8]朱硕,宋先知,李根生,等. 钻柱摩阻扭矩智能实时分析与卡钻趋势预测[J]. 石油钻采工艺,2021,43(4):428-435.ZHU Shuo,SONG Xianzhi,LI Gensheng,et al. Intelligent real-time analysis of drill string friction & torque and stuck pipe trend prediction[J]. Oil Drilling & Production Technology,2021,43(4):428-435.
[9]易思琦,魏凯. 基于SMOTE欠采样的随机森林卡钻风险评估方法[J]. 石油地质与工程,2023,37(4):100-103.YI Siqi,WEI Kai. Random forest stuck pipe risk assessment method based on SMOTE undersampling[J]. Petroleum Geology and Engineering,2023,37(4):100-103.
[10]张万兴. 基于GAN-LSTM的连续油管井下复杂情况预防[D]. 湖北荆州:长江大学,2024.ZHANG Wanxing. Prevention of coiled tubing downhole complications based on GAN-LSTM[D]. Jingzhou,Hubei:Yangtze University,2024.
[11]刘子豪,宋先知,朱硕,等. 基于VC-SVM与粒子群算法的卡钻智能预测方法[J]. 石油机械,2024,52(10):1-11.LIU Zihao,SONG Xianzhi,ZHU Shuo,et al. Intelligent stuck pipe prediction method based on VC-SVM and particle swarm optimization[J]. China Petroleum Machinery,2024,52(10):1-11.
[12]张涛,夏鹏,李军,等. 基于井下参数的SCNGO-SVM卡钻预警方法研究[J]. 石油机械,2025,53(1):20-27、36.ZHANG Tao,XIA Peng,LI Jun,et al. Study on SCNGO-SVM stuck pipe warning method based on downhole parameters[J]. China Petroleum Machinery,2025,53(1):20-27,36.
[13]朱硕. 基于机理模型与数据模型的卡钻智能预测方法[D]. 北京:中国石油大学(北京),2022.ZHU Shuo. Intelligent prediction method for stuck pipe based on mechanistic and data models[D]. Beijing:China University of Petroleum (Beijing),2022.
[14]刘慕臣,宋先知,李大钰,等. 钻柱摩阻扭矩智能预测模型与解释[J]. 煤田地质与勘探,2023,51(9):89-99.LIU Muchen,SONG Xianzhi,LI Dayu,et al. Intelligent prediction model and interpretation of drill string friction & torque[J]. Coal Geology & Exploration,2023,51(9):89-99.
[15]SCHORR S,MÖLLER M,HEIB J,et al. Quality prediction of drilled and reamed bores based on torque measurements and the machine learning method of random forest[J]. Procedia Manufacturing,2020,48:894-901.
[16]INOUE T,SUGIYAMA D,SHIMOTOMAI T. Machine learning approaches to anomaly detection of top drive torque causing drill pipe failure[C]. The 37th International Conference on Ocean,Offshore and Arctic Engineering,Madrid,Spain,2018:V008T11A00.
[17]ROSTAMI H,MANSHAD A K. A new support vector machine and artificial neural networks for prediction of stuck pipe in drilling of oil fields[J]. Journal of Energy Resources Technology,2014,136(2):024502.
[18]任远航. 面向大数据的K-means算法综述[J]. 计算机应用研究,2020,37(12):3528-3533.REN Yuanhang. A survey of K-means algorithm for big data[J]. Application Research of Computers,2020,37(12):3528-3533.
[19]苏晓眉,张涛,李玉飞,等. 基于K-Means聚类算法的沉砂卡钻预测方法研究[J]. 钻采工艺,2021,44(3):5-9.SU Xiaomei,ZHANG Tao,LI Yufei,et al. Study on sand stuck pipe prediction method based on K-means clustering algorithm[J]. Drilling & Production Technology,2021,44(3):5-9.
[20]张庆,何封,何佑伟. 基于机器学习的页岩气井井间干扰评价及预测[J]. 油气藏评价与开发,2022,12(3):487-495.ZHANG Qing,HE Feng,HE Youwei. Evaluation and prediction of interwell interference in shale gas wells based on machine learning[J]. Reservoir Evaluation and Development,2022,12(3):487-495.
[21]田龙,朱智华,王立伟,等. 基于大数据和无监督聚类算法的岩石可钻性表征和预测方法[J]. 新疆石油天然气,2024,20(2):29-36.TIAN Long,ZHU Zhihua,WANG Liwei,et al. Research on characterization and prediction method of rock drillability based on big data and unsupervised clustering algorithm[J]. Xinjiang Oil & Gas,2024,20(2):29-36.
[22]富浩,张涛,李玉梅,等. 基于井下参数的PCA-SVM卡钻预测研究[J]. 计算机仿真,2021,38(12):386-390.FU Hao,ZHANG Tao,LI Yumei,et al. Research on PCA-SVM stuck pipe prediction based on downhole parameters[J]. Computer Simulation,2021,38(12):386-390.
[23]丁建新,李雪松,宋先知,等. 水平井钻井提速-减阻-清屑多目标协同优化方法[J]. 石油机械,2023,51(11):1-10.DING Jianxin,LI Xuesong,SONG Xianzhi,et al. Multi-objective collaborative optimization method for ROP improvement,drag reduction,and cuttings removal in horizontal well drilling[J]. China Petroleum Machinery,2023,51(11):1-10.
|