新疆石油天然气 ›› 2025, Vol. 21 ›› Issue (2): 45-.DOI: 10.12388/j.issn.1673-2677.2025.02.005

• 油气勘探 • 上一篇    下一篇

PDC钻头损伤失效的智能识别方法

  

  1. 1.中国石油大学(北京)石油工程学院,北京昌平 102249;
    2.中国石油化工股份有限公司胜利油田分公司,山东东营 257001
  • 出版日期:2025-06-30 发布日期:2025-06-30
  • 通讯作者: 高德利(1958-),1990年毕业于石油大学(北京)油气田开发工程专业,博士,中国科学院院士,长期从事油气井工程领域的教学和科研工作。(E-mail)gaodeli@cup.edu.cn
  • 作者简介:刘维(1986-),2014年毕业于美国南卫理公会大学机械工程专业,博士,教授,主要从事油气井工程领域的教学和科研工作。(E-mail)wei.liu@cup.edu.cn
  • 基金资助:

    1.国家自然科学基金重点项目“复杂结构‘井工厂’立体设计建设基础研究”(52234002);

    2.重大项目“深海多金属结核高效采输系统设计基础理论研究”(52394250);

    3.北京市自然科学基金面上项目“超高钻压下PDC钻头齿在干热岩地层长寿命高效破岩机理研究”(2232060);

    4.横向项目“胜利工区太古界片麻岩高效破岩技术研究及应用”(HX20230050)

Intelligent Recognition Method for PDC Bit Damage

  1. 1.College of Petroleum Engineering,China University of Petroleum (Beijing),Changping 102249,Beijing,China;
    2. Sinopec Shengli Oilfield Company,Dongying 257001,Shandong,China
  • Online:2025-06-30 Published:2025-06-30

摘要:

准确判断PDC齿与PDC钻头的损伤失效形式及其原因是下趟钻工具选型和钻头迭代优化的关键一环。为了提高钻头损伤识别的准确性和客观性,特对数百只PDC出井钻头开展了失效分析,归纳总结了PDC齿(包括各类异形齿)的主要损伤失效形式及其原因,进而构建了包含上万张PDC齿损伤形貌的图像数据集,然后基于YOLOv7图像识别算法建立PDC齿损伤失效智能识别模型,该模型可以对PDC齿图片进行有效的损伤类别推理,并自动标注出对应的损伤失效形式。利用多种模型评价指标对该模型进行性能评估测试,结果显示模型识别准确率超过80%。在此基础上,结合PDC钻头设计理论、钻头损伤失效机理等相关知识,利用因果推理等统计学方法,形成一种新型的PDC钻头损伤失效智能识别方法,该方法仅通过钻头出井照片即可实现对钻头冠部不同区域PDC齿损伤失效形式的自动评估,并以此判断PDC钻头的主要失效原因。该研究成果对钻头损伤智能识别和智能钻井技术创新具有参考意义。

关键词:

"> 钻头, 损伤失效, 智能识别, 机器学习, 钻头选型

Abstract:

Accurately identifying the damage failure modes and causes of PDC cutters and PDC drill bits is a key step in the drilling tool selection and the drill bit iterative optimization. To improve the accuracy and objectivity of drill bit damage identification,failure analysis was conducted on hundreds of PDC bits tripped out of wells,and the main damage failure modes and causes of PDC cutters (including various shaped cutters) were summarized,leading to a dataset containing over ten thousand images of PDC cutter damage morphologies. Then,based on the convolutional neural network-based YOLOv7 image recognition algorithm,an intelligent recognition model for PDC cutter damage failure was established. This model can effectively infer damage types from PDC cutter images and automatically annotate the images with corresponding damage failure modes. The model was evaluated using multiple performance metrics,showing an identification accuracy of over 80%. Furthermore,this model was combined with the PDC drill bit design theory and damage failure mechanisms to develop a new intelligent recognition method for PDC drill bit damage failure,using statistical methods like causal inference. This method can automatically evaluate the damage failure modes of PDC cutters in different regions of the bit crown using only photos of bits tripped out of wells and determine the primary cause of PDC drill bit failure. The research findings provide references for intelligent drill bit damage identification and innovation in intelligent drilling technology.

Key words:

"> drill bit, damage and failure, intelligent recognition, machine learning, bit selection

中图分类号: