[1]MITCHELL T. Machine learning[M].New York City:McGraw Hill,1997:2.
[2]ALPAYDIN E. Introduction to machine learning[M]. Cambridge:MIT
Press,2014:3.
[3]JACOB K,ALAN D,HORST
V R. Machine learning and big data provide crucial insight for future
biomaterials discovery and research[J]. Acta Biomaterialia,2021,10(130):54-65.
[4]孙慧然. 一种基于决策树的机器学习方法和推理机设计[D].吉林长春:长春工业大学,2014.
[5]HUNT E B,MARIN J,STONE
P J. Experiments in induction[J]. The American Journal of Psychology,1966,80(4):20-28.
[6]QUINLAN JR. Discovering rules by induction from large collections of
examples[J]. In Expert System
in the Micro Electronic Age,1979,1(5):26-37.
[7]RUGGIERI S. Efficient C4.5 classification algorithm[J]. IEEE Transactions on Knowledge &
Data Engineering,2002,14(2):438-444.
[8]PEARSON K,MAG P. On lines and planes of
closest fit to systems of points in space[J]. Philosophical Magazine,1901,2(11):559-572.
[9]BELLMAN R E. Dynamic programming and lagrange multipliers[J]. Proceedings of the National Academy of
Sciences of the United States of America,1956,42(10):767-769.
[10]BELLMAN R E. A daptive control processes:A
guided tour[M]. Princeton
University Press,2015.
[11]毕华,梁洪力,王珏.重采样方法与机器学习[J].计算机学报,2009,32(5):862-877.
[12]尹芳黎,杨雁莹,王传栋,等.矩阵奇异值分解及其在高维数据处理中的应用[J]. 实现创新协同发展数学的实践与认识,2011,41(15):171-177.
[13]周璇,杨建成. 基于支持向量回归机的空调逐时负荷滚动预测算法[J]. 中南大学学报,2014,45(3):952-957.
[14]刘树春. 基于支持向量机和深度学习的分类算法研究[D].上海:华东师范大学,2015.
[15]BOSER B E . A training algorithm for optimal margin classifiers[J]. Proceedings of Annual Acm Workshop on
Computational Learning Theory,2008,5(7):144--152.
[16]CAO Z,HUA H,BO G,et al. A novel prediction model of frost growth on cold surface
based on support vector machine[J]. Thermal Engineering,2009,29(11):2320-2326.
[17]CHEN R C,HSIEH C H. Web page classification
based on a support vector machine using a weighted vote schema [J]. Expert Systems with Applications,2006,2(31):427-435.
[18]董正浩. 基于支持向量机的移动互联网用户行为偏好研究[D].北京:北京邮电大学,2014.
[19]董宝玉. 支持向量技术及其应用研究[D].辽宁大连:大连海事大学,2016.
[20]何晓群. 实用回归分析[M]. 北京:高等教育出版社,2008.
[21]汪奇生. 线性回归模型的总体最小二乘平差算法及其应用研究[D].云南昆明:昆明理工大学,2014.
[22]蒋志远. 主成分分析和线性回归在劳动争议数据中的应用[D].吉林长春:吉林大学,2015.
[23]MCCULLOCH W S,PITTS W. A logical calculus of
the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics,1943,5(4):115-133.
[24]解男男. 机器学习方法在入侵检测中的应用研究[D].吉林长春:吉林大学,2015.
[25]郭琼.基于人工神经网络对小鼠焦虑情绪的模拟[D].深圳:中国科学院大学(中国科学院深圳先进技术研究院),2021.
[26]PEROZZI B,AL-RFOU R,KULKARNI
V,et al. Inducing Language networks from continuous
space word representations[J].
Computer Science,2014,549:261-273.
[27]KRIZHEVSKY A,SUTSKEVER I,HINTON G E. Imagenet classification with deep convolutional
neuralnetworks[J]. Advances in
Neural Information Processing Systems,2012,25:1097-1105.
[28]LLOYD S. Least squares quantization in PCM[J]. Information Theory,IEEE Transactions,1982,28(2):129-137.
[29]MACQUEEN J. Some methods for classification and analysis of
multivariate observations[C].Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.
1967,5(4):281-297.
[30]ZADEH L A,KLIR G J,YUAN
B. Fuzzy sets,fuzzy logic,and
fuzzy systems:Selected papers[M]. World Scientific,1996:394-432.
[31]刘新宇. 基于模糊逻辑的异构无线网络选择算法研究[D].广州:华南理工大学,2018.
[32]陈奇南,梁洪峻. 模糊集和粗糙集[J]. 计算机工程,2002,28(8):3.
[33]任敏,杨霞,李强,等. 基于模糊逻辑控制交流伺服系统的研究[J]. 燕山大学学报,2001,25(4):4.
[34]赵艳辉,张公平,杨育荣.直接力气动力复合控制导弹的模糊逻辑自动驾驶仪设计[J].弹箭与制导学报,2014,34(3):33-36.
[35]张作贵,毛罕平. 基于模糊逻辑控制的温室温度控制技术的研究[J]. 农业装备技术,2004,30(4):3.
[36]张瑞冬. 基于模糊神经网络的短期电力负荷预测[D].广西桂林:广西师范大学,2015.
[37]HOLLAND J H. Adaptation in natural and artificial systems[M]. Camgridge:MIT
Press,1992:5.
[38]黄璐. 基于遗传算法的云计算任务调度算法研究[D].福建厦门:厦门大学,2014.
[39]夏定纯,徐涛.计算智能[M].北京:科学出版社,2008.
[40]李建锋,彭舰.云计算环境下基于改进遗传算法的任务调度算法[J].计算机应用,2011,31(01):184-186.
[41]KEVIN P M. Dynamic Bayesian networks:Representation,inference and learning[D]. Berkeley:University of California,2002.
[42]HOPE L R,NICHOLSON A E,KORB K B,et al. TakeheartII:A tool to support clinical cardiovascular risk assessment[R]. Monash University,2007.
[43]林春漪,马丽红,尹俊勋,等.基于多层贝叶斯网络的医学图像语义建模[J].生物医学工程学杂志,2009,26(2):400-404.
[44]张野,于湛麟.基于贝叶斯网络的网络品牌认知度评价方法[J].计算机技术与发展,2014,24(5):176-179.
[45]张秀洁. 城轨车辆空气制动系统仿真模拟及故障诊断研究[D].北京:北京交通大学,2012.
[46]董晨. 贝叶斯网络在电力系统故障中的应用研究[D].辽宁沈阳:沈阳工业大学,2010.
[47]PERNESTAL A,NYBERG M,WARNQUIST H. Modeling and inference for troubleshooting with
interventions applied to a heavy truck auxiliary braking system[J]. Engineering Applications of Artificial
Intelligence,2012,25(4):705-719.
[48]LEE Y S,CHO S B. Mobile context inference
using two-layered Bayesian networks for smartphones[J]. Expert Systems with Applications,2013,40(11):4333-4345.
[49]杨传书,张好林,肖莉.自动化钻井关键技术进展与发展趋势[J].石油机械,2017,45(5):10-17.
[50]KASRAVI J,SAFARZADEH M A,HASHEMI A. A population-feedback control based algorithm for well
trajectory optimization using proxy model[J]. Journal of Rock Mechanics and Geotechnical Engineering,2017,9(2):281-290.
[51]MANSOURI V,KHOSRAVANIAN R,WOOD D A,et al. 3-D well path design using a
multi objective genetic algorithm[J]. Journal of Natural Gas Science and Engineering,2015,27:(23)219-235.
[52]马玉凤,袁野.井眼轨迹预测及井眼轨迹三维可视化系统开发[J]. 微型电脑应用,2017,33(8):65-67.
[53]AHMED O S,ADENIRAN A A,SAMSURI A. Computational intelligence based prediction of drilling
rate of penetration:A comparative study[J]. Journal of Petroleum Science and
Engineering,2019,26(4):1-12.
[54]ASHRAFI S B,ANEMANGELY M,SABAH M,et al. Application of hybrid
artificial neural networks for predicting rate of penetration (ROP):A case study from Marun oil field[J]. Journal of Petroleum Science and
Engineering,2019,20(5):604-623.
[55]刘胜娃,孙俊明,高翔,等.基于人工神经网络的钻井机械钻速预测模型的分析与建立[J].计算机科学,2019,46(增刊):605-608.
[56]AHMADI M A,SHADIZADEH S R,SHAH K,et al. An accurate model to predict
drilling fluid density at wellbore conditions[J]. Egyptian Journal of Petroleum,2018,27(1):1-10.
[57]GUL S,VAN OORT E. A machine learning
approach to filtrate loss determination and test automation for drilling and completion
fluids[J]. Journal of Petroleum
Science and Engineering,2020,186:106727.
[58]董萃莲,董海峰,闫红丹.基于机器学习的钻井液体系优选方法分析[J].智能计算机与应用,2020,10(5):152-154.
[59]刘胜娃,孙俊明,高翔,等.基于机器学习与态势感知技术的钻井液大数据分析与智能决策支持平台建设[J].物联网技术,2019,9(5):46-48.
[60]ABBAS A K,AL-HAIDERI N A,BASHIKH A A. Implementing artificial neural networks and support
vector machines to predict lost circulation[J]. Egyptian Journal of Petroleum,2019,28(4):339-347.
[61]AL DUSHAISHI M F,ABBAS A K,ALSABA M,et al. Data-driven stuck pipe
prediction and remedies[J].
Upstream Oil and Gas Technology,2021,6:100024.
[62]张倩. 基于机器学习的钻井事故识别系统研究与实现[D].陕西西安:西安石油大学,2021.
[63]孙万海. 基于SVM和PSO的钻井事故智能预警系统研究[D].陕西西安:西安石油大学,2014.
[64]李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1-8.
[65]窦宏恩,张蕾,米兰,等.人工智能在全球油气工业领域的应用现状与前景展望[J].石油钻采工艺,2021,43(4):405-419.
[66]底青云,李守定,付长民,等. 基于云端大数据的智能导向钻井技术方法[J]. 工程地质学报,2021,29(1):162-170.
|