KONG Lingcong, SUN Yarong, XIE Yu, HUANG Bingxuan, MA Jingui, HOU Junwei. Development of CO2 Capture Technology Using MOFs[J]. Xinjiang Oil & Gas, 2022, 18(2): 78-83.
[3]JAFARINASAB M,AKBARI A,OMIDKHAH M,et al. An efficient co-based metal-organic framework nanocrystal (CoZIF-67)for adsorptive desulfurization of dibenzothiophene:Impact of the preparation approach on structure tuning[J].Energy & Fuels,2020,34(10):12779 - 12791.
[4]WANG L L,LI X,HAO L D,et al. Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced elec⁃
trochemicgal CO2 reduction to ethylene[J]. Chinese Journal of Catalysis,2022,43(4):1049-1057.
[5]杨支秀,鲁博,郭丁丁,等. CO2捕集及分离方法研究现状与进展[J]. 山东化工,2020,49(18):62-64.
[6]阮并元. CO2捕集技术之溶剂吸收技术[J]. 石油石化绿色低碳,2021,6(5):75.
[7]崔颖娜,张殊佳,王爱玲,等. 低共熔溶剂用于CO2捕集的研究进展[J]. 天然气化工,2022,47(1):33-43.
[8]袁标,毛捷,段翠佳,等. 氨基碳点/聚酰亚胺混合基质膜的制备及CO2分离性能研究[J]. 石油与天然气化工,2021,50
(6):37-41、48.
[9]赵毅,王永斌,王添颢. 有机胺法吸收二氧化碳的研究进展[J]. 再生资源与循环经济,2020,13(7):26-29.
[10]胡苏阳,刘鑫博,唐建峰,等. 13X沸石分子筛对低浓度CO2动态吸附[J]. 化工进展,2022,41(1):153-160.
[11]陈艺兰,钟琴华,曾炜鹏,等. 超临界氨水改性活性炭及其对CO2的吸附性能[J]. 化工环保,2021,41(5):642-646.
[12]孙易,建伟伟,解伟欣,等. 金属-有机框架材料用于CO2吸附的研究进展[J]. 应用化工,2021,50(12):3482-3488.
[13]张明星,张培培,王素,等. 基于超分子构筑模块和酰胺插入的螺旋配体的PCN类型金属有机框架的结构和选择性
吸附CO[2 J]. 无机化学学报,2022,38(3):423-429.
[14]SALIBA D,AMMAR M,RAMMAL M,et al. Crystal growth of ZIF-8,ZIF-67,and their mixed-metal derivatives [J].
Journal of the American Chemical Society,2018,14(5):1812-1823.
[15]LI J R,YU J,LU W,et al. Porous materials with predesigned single-molecule traps for CO2 selective adsorption[J]. Nature Communications,2013,4:1538.
[16]YI J D,SI D H,XIE R K,et al. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets
for efficient electroreduction of CO2[J]. Angew. Chem. Int.Ed.,2021,60:17108-17114.
[17]LI J,WANG X X,ZHAO G X,et al. Metal-organic framework-based materials:Superior adsorbents for the cap⁃
ture of toxic and radioactive metal ions[J]. Chem. Soc. Rev,2018,47(7):2322-2356.
[18]HU Z G,GAMI A,WANG Y X,et al. A triphasic modulated hydrothermal approach for the synthesis of multivariate metal
-organic frameworks with hydrophobic moieties for highly efficient moisture-resistant CO2 capture[J]. Advanced Sustainable Systems,2017,1(11):1700092.
[19]GEORGE P,DHABARDE N R,CHOWDHURY P. Rapid synthesis of titanium based metal organic framework(MIL125)via microwave route and its performance evaluation in photocatalysis[J]. Materials Letters,2017,186:151-154.
[20]LUO J J,YANG X,WANG S M,et al. Facile synthesis of nickel-based metal organic framework[Ni(3 HCOO)6
]by microwave method and application for supercapacitor [J].Functional Materials Letters,2018,11(2):1850030.
[21]赵新,乔志华,孙玉绣,等. 机械化学法合成多配体MOF填料用于高效CO2分离[J]. 膜科学与技术,2021,41(5):11-
16、25.
[22]耿晨旭,孙玉绣,黄宏亮,等. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报,2021,72(9):
4750-4758、4974.
[23]毛海棁,金花,李砚硕. ZIF-76-mbIm膜的制备及其CO2分离研究[J]. 宁波大学学报:理工版,2022,35(2):105-112.
[24]张丙凯,刘晶,王敏俊,等. CO2在金属有机框架材料MMOF-74的吸附机理[J]. 燃烧科学与技术,2014,20(3):
252-256.
[25]林小英,苏婷,钟琴华,等. Ni-MOF的合成、表征及其CO2吸附性能[J]. 福建工程学院学报,2018,16(4):346-350.
[26]孙洪军,程海清,宋扬. 火驱尾气CO2含量与燃烧状态对应关系研究[J]. 特种油气藏,2019,26(5):76-80.
[27]侍雁翔,刘峰. 硫化氢生成机理及影响因素实验研究[J].中国石油和化工标准与质量,2019,39(12):156-157.
[28]王猛刚,李维学,戴剑锋,等. 硫化氢在金属-有机骨架材料中吸附与分离的计算模拟[J].原子与分子物理学报,
2017,34(6):1025-1032.
[29]李立博. 基于甲烷氮气分离的柔性金属有机骨架(MOFs)性能及拓展研究[D]. 太原:太原理工大学,2015.
[30]马蕾,张飞飞,宋志强,等. 金属有机骨架材料用于吸附分离CH4和N2的研究进展[J].化工进展,2021,40(9):5107-5117