Xinjiang Oil & Gas ›› 2023, Vol. 19 ›› Issue (1): 27-34.DOI: 10.12388/j.issn.1673-2677.2023.01.005
• OIL AND GAS DEVELOPMENT • Previous Articles Next Articles
Online:
2023-03-06
Published:
2023-03-06
Supported by:
压裂支撑剂研究与应用进展
作者简介:
张敬春(1984-),2014年毕业于山东大学化学专业,博士,高级工程师,目前从事储层改造、油田化学研究。(Tel)0990-6881109(E-mail)zhangjingchun1@petrochina.com.cn
基金资助:
1、中国石油天然气股份公司科技项目“油田用化工新材料产品开发”(2020E-28);
2、新疆维吾尔自治区天山英才计划项目“油气储层改造新型支撑剂研发与应用”(2022198717)。
ZHANG Jingchun, , REN Hongda , YU Tianxi , YIN Jianyu , ZHOU Jian , ZHOU Hongtao. [J]. Xinjiang Oil & Gas, 2023, 19(1): 27-34.
张敬春, , 任洪达 , 俞天喜 , 尹剑宇 , 周健 , 周洪涛.
压裂支撑剂研究与应用进展 [J]. 新疆石油天然气, 2023, 19(1): 27-34.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgxjog.com/EN/10.12388/j.issn.1673-2677.2023.01.005
[1]MONTGOMERY C T,SMITH M B. Hydraulic fracturing:history of an enduring technology[J]. Journal of Petroleum Technology,2010,62(12):26-40. [2]杜红莉,张薇,马峰,等. 水力压裂支撑剂的研究进展[J]. 硅酸盐通报,2017,36(8):2625-2630. [3]郑新权,王欣,张福祥,等. 国内石英砂支撑剂评价及砂源本地化研究进展与前景展望[J]. 中国石油勘探,2021,26(1):131-137. [4]SALDUNGARAY P,PALISCH T. Understanding ceramic proppants:Are they all created equal?[C]. SPE Unconventional Gas Conference and Exhibition,Muscat,Oman,January 2013. [5]VINCENT M C. Proving it-a review of 80 published field studies demonstrating the importance of increased fracture conductivity[C]. SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,September 2002. [6]方宇飞,丁冬海,肖国庆,等. 陶粒支撑剂的研究及应用进展[J]. 化工进展,2022,41(5):2511-2525. [7]赵学松,刘琦. 煤基固体废弃物制备压裂支撑剂研究进展[J/OL]. 洁净煤技术:1-17. https://kns.cnki.net/kcms/detail/11.3676.td.20220217.1623.001.html. DOI:10.13226/j.issn. 1006-6772.21101401. [8]孔祥辰,白频波,宋伟,等. 煅烧煤矸石添加量对陶粒支撑剂力学性能的影响[J]. 硅酸盐通报,2022,41(6):2039-2046. [9]赵紫石,崔李鹏,赵旭,等. 利用固废煤矸石制备陶粒支撑剂的研究[J]. 山西煤炭,2019,39(1):1-4. [10]WU X,HUO Z,REN Q,et al. Preparation and characterization of ceramic proppants with low density and high strength using fly ash[J]. Journal of Alloys and Compounds,2017(702):442-448. [11]王天祥,王肃凯,张贵仪,等. 工业固废制备石油压裂支撑剂[J]. 新疆石油天然气,2022,18(3):82-85. [12]李灿然,李向辉,遆永周,等. 压裂支撑剂研究进展及发展趋势[J]. 陶瓷学报,2016,37(6):603-607. [13]程倩倩,李娜,张琳羚,等. 新型覆膜支撑剂研究进展[J]. 热固性树脂,2020,35(6):66-70. [14]张潇,王占一,吴峙颖,等. 压裂支撑剂的覆膜改性技术[J/OL]. 化工进展:1-19. https://kns.cnki.net/kcms/detail/11.1954.TQ.20220617.1410.002.html. DOI:10.16085/j.issn.1000-6613.2022-0487. [15]王丹. 水力压裂支撑剂技术及面临的挑战[J]. 中外能源,2018,23(9):24-30. [16]BESTAOUI-SPURR N. Materials science improves silica sand strength[C]. SPE International Symposium and Exhibition on Formation Damage Control,Lafayette,Louisiana,USA,February 2014. [17]JACKSON K,OREKHA O. Low density proppant in slickwater applications improves reservoir contact and fracture complexity-a permian basin case history[C]. SPE Liquids-Rich Basins Conference-North America,Midland,Texas,USA,September 2017. [18]李树良. ULW-1.05超低密度支撑剂评价及应用[J]. 油气田地面工程,2013,32(9):66-67. [19]杨双春,佟双鱼,李东胜,等. 低密度支撑剂研究进展[J]. 化工进展,2019,382(9):4264-4274. [20]MYERS R,POTRATZ J,MOODY M. Field application of new lightweight proppant in Appalachian tight gas sandstones[C]. SPE Eastern Regional Meeting,Charleston,West Virginia,USA,September 2004. [21]林厉军,刘付臣,黄降水,等. 北美压裂用低密度支撑剂技术的进展[J]. 化工管理,2018,(31):103-106. [22]HAN J,PIROGOV A,LI C,et al. Maximizing productivity with ultra-lightweight proppant in unconventional wells:simulations and field cases[C]. SPE Asia Pacific Hydraulic Fracturing Conference,Beijing,China,August 2016. [23]KESHAVARZ A,JOHNSON R,CARAGEORGOS T,et al. Improving the conductivity of natural fracture systems in conjunction with hydraulic fracturing in stress sensitive reservoirs[C]. SPE Asia Pacific Oil & Gas Conference and Exhibition,Perth,Australia,October 2016. [24]光新军,王敏生,韩福伟,等. 压裂支撑剂新进展与发展方向[J]. 钻井液与完井液,2019,36(5):529-533、541. [25]JARDIM A T,PRATA F G M,GOMEZ J R,et al. Ultralightweight proppants:an effective approach to address problems in long horizontal gravel packs offshore Brazil[J]. SPE Drilling & Completion,2012,27(4):613-624. [26]张伟民,李宗田,李庆松,等. 高强度低密度树脂覆膜陶粒研究[J]. 油田化学,2013,30(2):189-192、220. [27]魏伟. 煤层气压裂用低密度坚果壳支撑剂性能评价与现场试验[J]. 油气藏评价与开发,2020,10(4):93-96. [28]杨珅. 一种页岩气田压裂用低密度支撑剂的研制[D]. 四川成都:西南石油大学,2017. [29]李波,李璐,黄勇,等. 树脂包裹坚果壳超低密度支撑剂的研制[J]. 油田化学,2009,26(3):256-259、281. [30]RICKARDS A R,BRANNON H D,WOOD W D,et al. High strength,ultralightweight proppant lends new dimensions to hydraulic fracturing applications[J]. SPE Annual Technical Conference and Exhibition,Denver,Colorado,USA,October 2003. [31]PARKER M A,RAMURTHY K,SANCHEZ P W. New proppant for hydraulic fracturing improves well performance and decreases environmental impact of hydraulic fracturing operations[C]. SPE Eastern Regional Meeting,Lexington,Kentucky,USA,October 2012. [32]LI C,SPURR N,ROYCE T N. Post-fracturing production performance of small sized proppant in major unconventional formations[C]. SPE International Hydraulic Fracturing Technology Conference and Exhibition,Muscat,Oman,October 2018. [33]BECKWITH R. Proppants:where in the world[J]. Journal of Petroleum Technology,2011,63(4):36-41. [34]AL-TAILJI W H,SHAH K,DAVIDSON B M. The application and misapplication of 100-mesh sand in multi-fractured horizontal wells in low-permeability reservoirs[C]. SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,February 2016. [35]CALVIN J,GRIESER B,BACHMAN T. Enhancement of well production in the SCOOP woodford shale through the application of microproppant[C]. SPE Hydraulic Fracturing Technology Conference and Exhibition,The Woodlands,Texas,USA,January 2017. [36]DAHL J,NGUYEN P,DUSTERHOFT R,et al. Application of micro-proppant to enhance well production in unconventional reservoirs:laboratory and field results[C]. SPE Western Regional Meeting,Garden Grove,California,USA,April 2015. [37]董林芳,陈新阳. 自悬浮支撑剂的性能评价与现场应用[J]. 石油钻探技术,2018,46(6):90-94. [38]CAO W,XIE K,LU X,et al. Self-suspending proppant manufacturing method and its property evaluation[J]. Journal of Petroleum Science and Engineering,2020,192:1-10. [39]MAHONEY R P,SOANE D,KINCAID K P,et al. Self-suspending proppant[C]. SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,February 2013. [40]LIANG F,SAYED M,AL-MUNTASHERI G,et al. Overview of existing proppant technologies and challenges[C]. SPE Middle East Oil & Gas Show and Conference,Manama,Bahrain,March 2015. [41]梁莹. 自悬浮支撑剂研究进展及应用现状[J]. 油气井测试,2022,31(1):47-51. [42]GOLDSTEIN B,JOSYULA K,VANZEELAND A,et al. Improve well performance by reducing formation damage[C]. SPE/AAPG/SEG Unconventional Resources Technology Conference,San Antonio,Texas,USA,July 2015. [43]GOLDSTEIN B,JOSYULA K,VANZEELAND A,et al. Improve well performance by reducing formation damage[C]. SPE/AAPG/SEG Unconventional Resources Technology Conference,San Antonio,Texas,USA,July 2015. [44]李占争. 自悬浮支撑剂的研发与应用[J]. 化学工程与装备,2017(6):95-96. [45]郐婧文,卢祥国,曹伟佳,等. 胍胶自增稠支撑剂性能及其储层伤害性评价[J].油田化学,2019,36(2):219-224. [46]王磊. 牛庄洼陷官17井区沙四段页岩油自悬浮支撑剂压裂试验[J]. 油气藏评价与开发,2022,12(4):684-689. [47]张龙胜,秦升益,雷林,等. 新型自悬浮支撑剂性能评价与现场应用[J]. 石油钻探技术,2016,44(3):105-108. [48]黄博,熊炜,马秀敏,等. 新型自悬浮压裂支撑剂的应用[J]. 油气藏评价与开发,2015,5(1):67-70. [49]QUINTERO H J,MATTUCCI M,O’NEIL B,et al. Enhanced proppant suspension in a fracturing fluid through capillary bridges[C]. SPE Western Regional Meeting,Garden Grove,California,USA,April 2018. [50]BOYER J,MALEY D,O’NEIL B. Chemically enhanced proppant transport[C]. SPE Annual Technical Conference and Exhibition,Amsterdam,The Netherlands,October 2014. [51]QUINTERO H,FARION G,GARDENER D,et al. Successful application of a salt tolerant high viscous friction reducer technology:past and present[C]. SPE Annual Technical Conference and Exhibition,Calgary,Alberta,Canada,September 2019. [52]BAMMIDI V S,MORTAZAVI M,MCCLURE M,et al. Applying field-proven surface modified proppant SMP to increase gas production:a case study from Marcellus shale[C]. SPE Eastern Regional Meeting,Charleston,West Virginia,USA,October 2019. [53]MALEY D,BOYER J,O’NEIL B,et al. Surface modification of proppant to improve transport and placement[C]. International Petroleum Technology Conference,Kuala Lumpur,Malaysia,December 2014. [54]RADWAN A. A multifunctional coated proppant:a review of over 30 field trials in low permeability formations[C]. SPE Annual Technical Conference and Exhibition,San Antonio,Texas,USA,October 2017. [55]唐梅荣,赵振峰,陈文斌,等. 页岩油体积压裂原位生成支撑剂材料研究进展[J]. 功能材料,2022,53(9):9042-9050. [56]毛峥,李亭,刘德华,等. 水力压裂支撑剂应用现状与研究进展[J]. 应用化工,2022,51(2):525-530、537. [57]TONG S,MILLER C,MOHANTY K. Generation of in-situ proppant through hydro-thermal reactions[C]. SPE Hydraulic Fracturing Technology Conference and Exhibition,The Woodlands,Texas,USA,February 2019. [58]CHANG F F,BERGER P D,LEE C H. In-situ formation of proppant and highly permeable blocks for hydraulic fracturing[C]. SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,February 2015. [59]HUANG J,GONG W,LIN L,et al. In-situ proppant:beads,microproppant,and channelized-proppant[C]. Abu Dhabi International Petroleum Exhibition & Conference,Abu Dhabi,UAE,November 2019. [60]赵立强,张楠林,张以明,等. 自支撑相变压裂技术室内研究与现场应用[J].天然气工业,2020,40(11):60-67. [61]PEI Y,ZHAO P,ZHOU H,et al. Development and latest research advances of self-propping fracturing technology[J]. SPE Journal,2021,26(1):281-292. [62]李小刚,廖梓佳,杨兆中,等. 压裂用支撑剂应用现状和研究进展[J]. 硅酸盐通报,2018,37(6):1920-1923. [63]曲占庆,何利敏,王冰,等. 支撑剂表面疏水处理方法的研究[J]. 石油化工高等学校学报,2014,27(1):90-96. [64]FENG Y C,MA C Y,DENG J G,et al. A comprehensive review of ultralow-weight proppant technology[J]. Petroleum Science,2021,18(3):807-826. [65]FU L,ZHANG G,GE J,et al. Study on a new water-inhibiting and oil-increasing proppant for bottom-water-drive reservoirs[J]. Journal of Petroleum Science and Engineering,2016,145:290-297. [66]浮历沛. 通道压裂用自聚性支撑剂研究[D]. 山东青岛:中国石油大学(华东),2017. [67]WANG C,ZHANG K,O’NEIL B,et al. Proppant upgrade by wettability alteration[C]. International Petroleum Technology Conference,Bangkok,Thailand,November 2016. [68]GREEN J,DEWENDT A,TERRACINA J,et al. First proppant designed to decrease water production[C] SPE Annual Technical Conference and Exhibition,Dallas,Texas,USA,September 2018. [69]任闽燕,宋金波,郑铎,等. 复合控水砂表面结构及疏水性能研究[J]. 石油钻采工艺,2012,34(1):103-106. [70]史斌,苏延辉,邢洪宪,等. 基于疏水改性的超低密度控水支撑剂的制备及其性能[J]. 油田化学,2022,39(3):401-406、437. [71]张宁,田波,邢洪宪,等. 恩平稠油油藏亲油疏水支撑剂实验优选研究[J]. 当代化工,2022,51(7):1593-1596. [72]PALISCH T,CHAPMAN M,LEASURE J. Novel proppant surface treatment yields enhanced multiphase flow performance and improved hydraulic fracture clean-up[C]. SPE Liquids-Rich Basins Conference-North America,Midland,Texas,USA,September 2015. [73]GILLARD M,MEDVEDEV O,PENA A,et al. A new approach to generating fracture conductivity[C]. SPE Annual Technical Conference and Exhibition,Florence,Italy,September 2010. [74]MEDVEDEV A,YUDINA K,PANGA M K,et al. On the mechanisms of channel fracturing[C]. SPE Hydraulic Fracturing Technology Conference,The Woodlands,Texas,USA,February 2013. [75]杨文波. 高速通道压裂技术及其现场应用[J]. 新疆石油天然气,2019,1(2):80-84、5. [76]YUDIN A,RAKHMATULLIN M,SADYKOVA D,et al. Local-sand-enabled channel fracturing. Case study from Jurassic Formations in Uvat Region[C]. SPE Russian Petroleum Technology Conference,Moscow,Russia,October 2019. [77]INYANG U A,NGUYEN P D,CORTEZ J. Development and field applications of highly conductive proppant-free channel fracturing method[C]. SPE Unconventional Resources Conference,The Woodlands,Texas,USA,April 2014. [78]KAKADJIAN S,ZAMORA F,VENDITTO J J. Zeta potential altering system for increased fluid recovery,production,and fines control[C]. International Symposium on Oilfield Chemistry,Houston,Texas,USA,February 2007. [79]KAKADJIAN S,GARZA J,ZAMORA F. Enhancing gas production in coal bed methane formations with Zeta Potential altering system[C]. SPE Asia Pacific Oil and Gas Conference and Exhibition,Brisbane,Queensland,Australia,October 2010. [80]MASON D,SHAMMA H,VAN PETEGEM R,et al. Advanced sand control chemistry to increase maximum sand free rate with improved placement technique-a case study[C]. SPE Annual Technical Conference and Exhibition,Amsterdam,The Netherlands,October 2014. [81]NGUYEN P D,WEAVER J D. Enhancing well productivity in a tight-gas formation with an aqueous-based,surface-modification agent:laboratory study[C]. Tight Gas Completions Conference,San Antonio,Texas,USA,November 2010. [82]FU L P,ZHANG G,GE J,et al. Experimental study of self-aggregating proppants:new approaches to proppant flowback control[J]. The Open Petroleum Engineering Journal,2016,9:236-246. |
[1] |
CUI Pengxing, HOU Binchi, MENG Xuangang, DANG Hailong, WANG Chenchen.
Micro-Scale Oil and Water Migration Characteristics of Water-Injection Huff and Puff in Ultra-Low Permeability Reservoirs [J]. Xinjiang Oil & Gas, 2023, 19(1): 8-15. |
[2] |
JIANG Ming, LI Zhiqiang, DUAN Guifu, YANG Jingjia, SHI Yangzhi, SHI Hanqi.
Effect of Hydraulic Fracture Conductivity on Deep Shale Gas Production [J]. Xinjiang Oil & Gas, 2023, 19(1): 35-41. |
[3] |
WANG Tao, CHENG Leiming, XIANG Yuankai, CHENG Ning, WANG Bo, ZHOU Hang.
Numerical Simulation of Fracture Propagation Pattern in the Presence of Gravel [J]. Xinjiang Oil & Gas, 2023, 19(1): 42-48. |
[4] | ZHENG Cunchuan, ZHANG Liwei, XU Jinshan, ZEN Meiting, FU Gaofeng, FU Yulong. Construction and Performance Evaluation of Nano Microemulsion Oil Displacement System#br# [J]. Xinjiang Oil & Gas, 2023, 19(1): 89-94. |
[5] | WAN Tao , QIN Jianhua , ZHANG Jing. Practices of Zipper Fracturing for Tight Reservoir Development with Small Well Spacing [J]. Xinjiang Oil & Gas, 2022, 18(4): 26-32. |
[6] | ZHANG Yupeng, SHENG Mao, WANG Bo, LI Jie, TIAN Shouceng, ZHANG Zhichao, LI Gensheng. Numerical Simulation for Controlling Fracture Propagation of an Infill Well with Radial Multilateral Wells [J]. Xinjiang Oil & Gas, 2022, 18(3): 31-37. |
[7] | YANG Nengyu, LIANG Tiancheng, QIU Jinping, CAI Bo, YI Xinbin, YAN Yuzhong, . Uncertainty Analysis for the Testing Methods of Fracturing Proppant Performance [J]. Xinjiang Oil & Gas, 2022, 18(3): 38-43. |
[8] | WANG Tianxiang, WANG Sukai, ZHANG Guiyi, PU Songling, ZHANG Lipeng. Petroleum Fracturing Proppant Preparation from Industrial Solid Waste [J]. Xinjiang Oil & Gas, 2022, 18(3): 82-85. |
[9] | LIANG Tiancheng, YANG Nengyu, CAI Bo, MENG Chuanyou, YI Xinbin, YAN Yuzhong, HUANG Xin, TANG Jianhua. Analysis of Turbidity Testing Methods and Property Evaluation for Hydraulic Fracturing Proppants [J]. Xinjiang Oil & Gas, 2022, 18(1): 32-37. |
[10] | CHEN Xi, LIU Ruining, XIE Bobo, PAN Yuting, HE Xiaodong. Productivity Model of Fractured Horizontal Wells in Shale Oil Reservoirs with Bedding Fractures Considered [J]. Xinjiang Oil & Gas, 2022, 18(1): 73-79. |
[11] | LIU Kaixin, ZHENG Weijie, DAI Liya, PAN Liyan, ZHANG Long, CAI Guoqing. Exploration into and Practices of Low-Cost Volume Fracturing in Well Block X [J]. Xinjiang Oil & Gas, 2022, 18(1): 80-85. |
[12] | LIU Fenghe , Liu Dezhi, Qiao Shijun , Xing Xing, Lei Biao, Bai Yang. Study on Plugging Technology of Shizigou - Yingzhong Structural Belt in Qinghai Oilfield [J]. Xinjiang Oil & Gas, 2021, 17(4): 1-7. |
[13] | WEN Xianli, KONG Mingwei, LUO Yao, WANG Jian, ZHAO Chunyan, ZHAI Huaijian, WANG Rong. Study and Application of Fracturing Technology for Tight Reservoir in the Southern Margin of Junggar Basin with High Temperature,High Pressure and High Closure Stress [J]. Xinjiang Oil & Gas, 2021, 17(4): 15-20. |
[14] | LI Haitao, LUO Hongwen, XIANG Yuxing, AN Shujie, LI Ying, JIANG Beibei, XIE Bin, XIN Ye. The Application Status and Prospect of DTS/DAS in Fracturing Monitoring of Horizontal Wells#br# [J]. Xinjiang Oil & Gas, 2021, 17(4): 62-73. |
[15] | MA Jiang, SU Hongsheng, XU Xinniu, QI Jing, ZHENG Yongsheng, ZHANG Wei, DENG lin, DI xinye, WEI Ruihua. Study and Application of Ultra-High Temperature and Ultra-High Density Cement Slurry System in Deep and Ultra-Deep Wells at Southern Margin of Junggar Basin [J]. Xinjiang Oil & Gas, 2021, 17(3): 18-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||