[1]严博宇. 钻头磨损机理及改进技术研究[J]. 西部探矿工程,2023,35(11):58-60.YAN B Y. Research on drill bit wear mechanism and improvement technology[J]. West-China Exploration Engineering,2023,35(11):58-60.
[2]高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20-34.GAO D L,LIU W,WAN X X,et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques,2023,51(4):20-34.
[3]刘少洋. 基于深度学习的多工况钻头磨损状态监测研究[D]. 黑龙江哈尔滨:哈尔滨理工大学,2022.LIU S Y. Research on multi-condition drill bit wear state monitoring based on deep learning[D]. Harbin,Heilongjiang:Harbin University of Science and Technology,2022.
[4]WILSON A. Real-time data analytics allows for bit-wear monitoring and prediction[J]. Journal of Petroleum Technology,2018,70(12):67-68.
[5]WAUGHMAN R J,KENNER J V,MOORE R A. Real-time specific energy monitoring enhances the understanding of when to pull worn PDC bits[J]. SPE Drilling & Completion,2003,18(1):59-67.
[6]宋先知,裴志君,王潘涛,等. 基于支持向量机回归的机械钻速智能预测[J]. 新疆石油天然气,2022,18(1):14-20.SONG X Z,PEI Z J,WANG P T,et al. Intelligent prediction for rate of penetration based on support vector machine regression[J]. Xinjiang Oil & Gas,2022,18(1):14-20.
[7]DUPRIEST F E,KOEDERITZ W L. Maximizing drill rates with real-time surveillance of mechanical specific energy[J]. Society of Petroleum Engineers,2005.
[8]ABBAS R K,HASSANPOUR A,HARE C,et al. Instantaneous monitoring of drill bit wear and specific energy as a criteria for the appropriate time for pulling out worn bits[C]. SPE Annual Caspian Technical Conference and Exhibition,Astana,Kazakhstan,November 2014.
[9]RASHIDI B,HARELAND G,FAZAELIZADEH M,et al. Comparative study using rock energy and drilling strength models[C]. 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium,Salt Lake City,USA,June 2010.
[10]李根生,穆总结,田守嶒,等. 冲击破岩钻井提速技术研究现状与发展建议[J]. 新疆石油天然气,2024,20(1):1-12.LI G S,MU Z J,TIAN S C,et al. Research status and development proposal of ROP improvement technology with percussion rock-breaking method[J]. Xinjiang Oil & Gas,2024,20(1):1-12.
[11]张佳伟,孟昭,纪国栋,等. PDC钻头破岩效率及稳定性室内试验研究[J]. 石油机械,2020,48(12):35-43、51.ZHANG J W,MENG Z,JI G D,et al. Laboratory experimental study on rock breaking efficiency and stability of PDC bit[J]. China Petroleum Machinery,2020,48(12):35-43,51.
[12]王斌. 双级PDC钻头破岩效率的实验研究[D]. 山东青岛:中国石油大学(华东),2020.WANG B. Experimental study on rock cutting efficiency of two stage PDC bit[D]. Qingdao,Shandong:China University of Petroleum (East China),2020.
[13]李宏波,罗平亚,白杨,等. 机器学习算法概述及其在钻井工程中的应用[J]. 新疆石油天然气,2022,18(1):1-13.LI H B,LUO P Y,BAI Y,et al. Summary for machine learning algorithms and their applications in drilling engineering[J]. Xinjiang Oil & Gas,2022,18(1):1-13.
[14]CHEN X Y,YANG J,GAO D. Drilling performance optimization based on mechanical specific energy technologies[J]. Drilling,2018,35:133-161.
[15]TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1965,2(1):57-73.
[16]PESSIER R C,FEAR M J. Quantifying common drilling problems with mechanical specific energy and a bit-specific coefficient of sliding friction[C]. SPE Annual Technical Conference and Exhibition,Washington DC,USA,1992.
[17]ARMENTA M. Identifying inefficient drilling conditions using drilling-specific energy[C]. SPE Annual Technical Conference and Exhibition,Denver,Colorado,USA,September 2008.
[18]HAMERLY G,ELKAN C. Learning the k in k-means[J]. Advances in Neural Information Processing Systems,2003:16.
[19]CHO K,VAN MERRIËNBOER B,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. arXiv preprint arXiv:1406.1078,2014.
[20]王海涛,王建华,邱晨,等. 基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法[J]. 石油钻采工艺,2023,45(5):540-547、554.WANG H T,WANG J H,QIU C,et al. Recognition method of drilling conditions based on bi-directional long-short term memory recurrent neural network and conditional random field[J]. Oil Drilling & Production Technology,2023,45(5):540-547,554.
[21]YU Y,SI X S,HU C H,et al. A review of recurrent neural networks:LSTM cells and network architectures[J]. Neural Computation,2019,31(7):1235-1270.
|