[1]姚玉璧,郑绍忠,杨扬,等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报,2022,43(10):524-535.YAO Y B,ZHENG S Z,YANG Y,et al. Research progress and prospect on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica,2022,43(10):524-535.
[2]孙峰,毕文剑,周楷,等. 太阳能热利用技术分析与前景展望[J]. 太阳能,2021,(7):23-36.SUN F,BI W J,ZHOU K,et al. Analysis and prospect of solar thermal utilization techonlogies[J]. Solar energy,2021,(7):23-36.
[3]杜运平,陈宇超,沙畅畅,等.基于太阳能驱动水蒸发的系统设计及研究进展[J]. 辽宁石油化工大学学报,2020,40(5):33-38.DU Y P,CHEN Y C,SHA C C,et al.System design and research progress based on solar drive water evaporation[J]. Journal of Liaoning Shihua University,2020,40(5):33-38.
[4]毛翠骥,余雄江,徐进良,等. 耦合熔融盐储热的火电机组灵活调峰系统关键技术研究进展[J]. 热力发电,2023,52(2):10-22. MAO C J,YU X J,XU J L,et al. Research progress on key technologies of flexible peak shaving system of thermal power unit coupled with molten salt heat storage[J]. Thermal Power Generation,2023,52(2):10-22.
[5]国家发展改革委、国家能源局.“十四五”新型储能发展实施方案[EB/OL]. (2022-1-29)[2023-12-30]. http://zfxxgk.nea.gov.cn/2022-01/29/c_1310523208.htm.National Development and Reform Commission,National Energy Administration. Implementation plan for the development of new energy storage in the "14th Five-Year Plan"[EB/OL]. (2022-1-29)[2023-12-30]. http://zfxxgk.nea.gov.cn/2022-01/29/c_1310523208.htm.
[6]郑琼,江丽霞,徐玉杰,等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊,2022,37(4):529-540.ZHENG Q,JIANG L X,XU Y J,et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences,2022,37(4):529-540.
[7]Innovation outlook:Thermal energy storage[R]. International Renewable Energy Agency,2020.
[8]陈海生,李泓,徐玉杰,等. 2022年中国储能技术研究进展[J]. 储能科学与技术,2023,12(5):1516-1552.CHEN H S,LI H,XU Y J,et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology,2023,12(5):1516-1552.
[9]姜竹,邹博杨,丛琳,等. 储能技术研究进展与展望[J]. 储能科学与技术,2022,11(9):2746-2771.JIANG Z,ZOU B Y,CONG L,et al. Research progress and prospect of energy storage technology[J]. Energy Storage Science and Technology,2022,11(9):2746-2771.
[10]李磊,王昆彦,王育乔. 阳离子取代对尖晶石型硫化物储能性能的影响[J]. 石油化工高等学校学报,2022,35(6):59-65.LI L,WANG K Y,WANG Y Q. Effect of cation substitution on energy storage performance of spinel sulfides[J]. Journal of Petrochemical Universities,2022,35(6):59-65.
[11]曾光,纪阳,符津铭,等. 储能技术研究现状、热点趋势与应用进展[J]. 中国电机工程学报,2023,43(S1):127-142.ZENG G,JI Y,FU J M,et al. Research status,hot trends and application progress of thermal energy storage technology[J]. Proceedings of the CSEE,2023,43(S1):127-142.
[12]李拴魁,林原,潘锋. 热能存储及转化技术进展与展望[J]储能科学与技术,2022,11(5):1551-1562.LI S K,LIN Y,PAN F. Research progress in thermal energy storage and conversion technology[J].Energy Storage Science and Technology,2022,11(5):1551-1562.
[13]周玥,周子健,曹田田,等. 基于光热发电的热化学储热体系研究现状与展望[J]. 中南大学学报:自然科学版,2022,53(12):4818-4832.ZHOU Y,ZHOU Z J,CAO T T,et al. Research progress and prospects in thermochemical heat storage systems for solar thermal power generation[J]. Journal of Central South University(Science and Technology),2022,53(12):4818-4832.
[14]袁振国. 熔盐储能供蒸汽技术的应用前景分析[J]. 能源与节能,2022,(3):116-119.YUAN Z G. Application prospect of molten salt energy storage technology for steam supply[J]. Energy and Energy Conservation,2022,(3):116-119.
[15]林俊光,仇秋玲,罗海华,等. 熔盐储热技术的应用现状[J]. 上海电气技术,2021,14(2):70-73.LIN J G,QIU Q L,LUO H H,et al. Application status of molten salt heat storage technology[J]. Jouranl of Shanghai Electric Technology,2021,14(2):70-73.
[16]赵倩,王俊勃,宋宇宽,等. 熔融盐高储热材料的研究进展[J]. 无机盐工业,2014,46(11):5-8.ZHAO Q,WANG J B,SONG Y K,et al. Research progress in high heat storage material of molten salt[J]. Inorganic Chemicals Industry,2014,46(11):5-8.
[17]孟凡星. 碳酸盐熔盐储热材料热物性模拟研究[D].北京:华北电力大学,2021.MENG F X. Simulation of the thermophysical properties of carbonate molten salts for thermal energy storage[D]. Beijing:North China Electric Power University,2021.
[18]罗婧. 光热电站中316L不锈钢在碳酸熔盐中的腐蚀及FeAl防护涂层研究[D].安徽合肥:中国科学技术大学,2022.LUO J. Studies on molten carbonate salt corrosion of SS316L and FeAl coating in concentrated solar power plants[D]. Hefei,Anhui:University of Science and Technology of China,2022.
[19]WU Y T,REN N,WANG T,et al. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant[J]. Solar Energy,2011,85(9):1957-1966.
[20]LUO J,DENG C K,TARIQ N U H,et al. Corrosion behavior of SS316L in ternary Li2CO3-Na2CO3-K2CO3 eutectic mixture salt for concentrated solar power plants [J]. Solar Energy Materials and Solar Cells,2020,217:110679.
[21]杨薛明,陶嘉伟,孟凡星,等. Li2CO3/Na2CO3/K2CO3及其混合熔融盐储热材料热物性分子动力学研究[J]. 太阳能学报,2023,44(5):48-58.YANG X M,TAO J W,MENG F X,et al. Molecular dynamics study of thermophysical properties of Li2CO3/Na2CO3/K2CO3 and their mixed molten salt for heat storage[J]. Acta Energiae Solaris Sinica,2023,44(5):48-58.
[22]崔吉祥. 氯化熔融盐蓄热材料热物性模拟研究[D]. 北京:华北电力大学,2021.CUI J X. Simulation of the thermophysical properties of molten chloride salts for thermal energy storage[D]. Beijing:North China Electric Power University,2021.
[23]丁文进,Thomas B. 下一代太阳能光热电站中熔融氯盐技术研发进展[J]. Engineering,2021,7(3):334-347. DING W J,THOMAS B. Progress in research and development of molten chlorine salts for next generation concentrated solar power plants[J]. Engineering,2021,7(3):334-347.
[24]孙李平. 太阳能高温熔盐优选及腐蚀特性实验研究[D]. 北京:北京工业大学,2007.SUN L P. Experimental research on solar energy high temperature molten salt optimization and its corrosion property[D]. Beijing:Beijing University of Technology,2007.
[25]WEI X L,SONG M,WANG W L,et al. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied Energy,2015,156:306-310.
[26]LI P W,MOLINA E,WANG K,et al. Thermal and transport properties of NaCl-KCl-ZnCl2 eutectic salts for new generation high-temperture heat-transfer fluids[J]. Journal of Solar Energy Engineering,2016,138(5):054501.
[27]伍艳萍. 耐磨合金在高温氟化物熔盐中的腐蚀行为研究[D]. 北京:中国科学院大学,2022.WU Y P. Study on corrosion behavior of wear-resistant alloy in high temperature fluoride molten salt[D]. Beijing:University of Chinese Academy of Sciences,2022.
[28]邹露璐,吴玉庭,马重芳. 低熔点四元混合硝酸盐的开发与实验研究[J]. 太阳能学报,2020,41(5):27-32.ZOU L L,WU Y T,MA C F. Experimental study of low melting point mixed nitrates[J]. Acta Energiae Solaris Sinica,2020,41(5):27-32.
[29]王军涛,徐芳,韩海军. 三元体系NaNO3-KNO3-Ca(NO3)2相图预测及其热力学研究[J]. 太阳能学报,2016,37(5):1262-1269.WANG J T,XU F,HAN H J. Phase diagram prediction and thermodynamic properties of the ternary system NaNO3-KNO3-Ca(NO3)2[J]. Acta Energiae Solargis Sinica,2016,37(5):1262-1269.
[30]国家能源局. 关于建设太阳能热发电示范项目的通知[2016]223号[A/OL]. (2016-09-13)[2023-12-30].http://zfxxgk.nea.gov.cn/auto87/201609/t20160914_2298.htm.National Energy Administration. Notice on construction of solar thermal power generation demonstration project[2016]No. 223[A/OL]. (2016-09-13)[2023-12-30].http://zfxxgk.nea.gov.cn/auto87/201609/t20160914_2298.htm.
[31]观研报告网. 新增光热项目及政策扶持力度加码我国光热发电行业市场规模已超百亿[EB/OL]. (2023-06-9)[2023-12-30]. https://www.chinabaogao.com/market/202306/ 636746.html.Insight and Info. New solar thermal projects and policy support increased,the market size of China's solar thermal power generation industry has exceeded 10 billion[EB/OL]. (2023-06-9)[2023-12-30]. https://www.chinabaogao.com/market/202306/636746.html.
[32]左芳菲,韩伟,姚明宇. 熔盐储能在新型电力系统中应用现状与发展趋势[J]. 热力发电,2023,52(2):1-9.ZUO F F,HAN W,YAO M Y. Application status and development trend of molten salt energy storage in novel power systems[J]. Thermal Power Generation,2023,52(2):1-9.
[33]余抒阳. 太阳能单罐熔盐储热特性数值模拟研究[D]. 吉林省吉林市:东北电力大学,2020.YU S Y. Numerical simulation and study on heat storage characteristics of molten-salt based single-tank solar energy thermal energy storage system[D]. Jilin,Jilin Province:Northeast Electric Power University,2020.
[34]张墨耕,韩兆辉,顾鹏程,等. 塔式光热技术在综合能源系统中的应用[J]. 新疆石油天然气,2022,18(2):71-77.ZHANG M G,HAN Z H,GU P C,et al. Application of tower photothermal technology in integrated energy system[J]. Xinjiang Oil & Gas,2022,18(2):71-77.
|