[1]张彦菊,石兵波,赵娇燕,等.中国石油新能源电力系统[J].新疆石油天然气,2022,18(2):21-25.
ZHANG Yanju,SHI Bingbo,ZHAO Jiaoyan,et al. New energy power system of PetroChina[J]. Xinjiang Oil & Gas,2022,18(2):21-25.
[2]金伟勇,卢丽娜,赖欢欢,等.基于功率特征的K-ISSA-LSTM光伏功率预测[J].太阳能学报,2024,45(2):429-434.
JIN Weiyong,LU Lina,LAI Huanhuan,et al. K-ISSA-LSTM photovoltaic power prediction based on power characteristic[J]. Acta Energiae Solaris Sinica,2024,45(2):429-434.
[3]龙小慧,秦际赟,张青雷,等.基于相似日聚类及模态分解的短期光伏发电功率组合预测研究[J].电网技术,2024,48(7):2948-2957.
LONG Xiaohui,QIN Jiyun,ZHANG Qinglei,et al. Short-term photovoltaic power prediction study based on similar day clustering and modal decomposition[J]. Power System Technology,2024,48(7):2948-2957.
[4]常青松,杨昭,杨熠辉,等.基于相似日聚类的超短期光伏功率组合预测模型[J].热力发电,2023,52(11):123-131.
CHANG Qingsong,YANG Zhao,YANG Yihui,et al. Ultrashort term photovoltaic power combinatorial forecasting model based on similar day clustering[J]. Thermal Power Generation,2023,52(11):123-131.
[5]赵唯嘉,张宁,康重庆,等.光伏发电出力的条件预测误差概率分布估计方法[J].电力系统自动化,2015(16):8-15.
ZHAO Weijia,ZHANG Ning,KANG Chongqing,et al. A method of probabilistic distribution estimation of conditional forecast error for photovoltaic power generation[J]. Automation of Electric Power Systems,2015(16):8-15.
[6]高岩,吴汉斌,张纪欣,等.基于组合深度学习的光伏功率日前概率预测模型[J].中国电力,2024,57(4):100-110.
GAO Yan,WU Hanbin,ZHANG Jixin,et al.Day-ahead probabilistic PV power forecasting model based on combined deep learning[J].Electric Power,2024,57(4):100-110.
[7]张宏伟,张振东.大规模风电场并网系统次同步振荡研究综述[J].通信电源技术,2020,37(7):267-269.
ZHANG Hongwei,ZHANG Zhendong. A review of sub-synchronous oscillation in large-scale wind-electrical field grid-connected systems[J].Telecom Power Technologies,2020,37(7):267-269.
[8]Zhao C F,Wan C,Song Y,et al. Optimal nonparametric prediction intervals of electricity load[J]. IEEE Transactions on Power Systems,2020,3 5(3):2467-2470.
[9]Huang C,Kuo P. Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting[J]. IEEE Access,2019,7:74822-74834.
[10]Qu J,Qian Z,Pei Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern[J]. Energy,2021,232.
[11]杨国华,张鸿皓,郑豪丰,等.基于相似日聚类和IHGWO-WNN-AdaBoost模型的短期光伏功率预测[J].高电压技术,2021,47(4):1185-1194.
YANG Guohua,ZHANG Honghao,ZHENG Haofeng,et al. Short-term photovoltaic power forecasting based on similar weather clustering and IHGWO-WNN-AdaBoost modal [J]. High Voltage Engineering,2021,47(4):1185-1194.
[12]许芬.基于自适应变分模态分解的光储混合系统功率波动平抑机制研究[D].浙江大学,2023.
XU Fen. Research on power fluctuation smoothing mechanism of photovoltaic storage hybrid system based on self-adaptive variational mode decomposition[D]. Zhejiang,Hangzhou:Zhejiang University,2023.
[13]薛阳,李金星,杨江天,等.基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测[J].南方电网技术,2024,18(11):97-105.
XUE Yang,LI Jinxing,YANG Jiangtian,et al. Short-term prediction of photovoltaic power based on similar day analysis and improved whale algorithm to optimize LSTM network model[J]. Southern Power System Technology,2024,18(11):97-105.
[14]毕锐,丁明,徐志成,等.基于模糊C均值聚类的光伏阵列故障诊断方法[J].太阳能学报,2016,37(3):730-736.
BI Rui,DING Ming,XU Zhicheng,et al. PV array fault diagnosis based on FCM[J]. Acta Energiae Solaris Sinica,2016,37(3):730-736.
[15]黄博阳,何肖蒙,肖小兵,等.基于FCM-WS-BP的光伏日前出力预测研究[J].控制工程,2023,30(12):2254-2260.
HUANG Boyang,HE Xiaomeng,XIAO Xiaobing,et al. Research of photovoltaic day-ahead output power prediction based on FCM-WS-BP[J]. Control Engineering of China,2023,30(12):2254-2260.
[16]李练兵,张佳,韩静楠等.基于Elman理论的光伏阵列短期功率预测方法研究[J].太阳能学报,2017,38,(6):1560-1565.
LI Lianbing,ZHANG Jia,HAN Jingnan,et al. Short-term PV power forecast research of PV array based on Elman algorithm[J].Acta Energiae Solaris Sinica,2017,38(6):1560-1565.
[17]李超然,潘鹏程,杨伟荣,等.基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测[J].太阳能学报,2024,45(5):508-516.
LI Chaoran,PAN Pengcheng,YANG Weirong,et al. Research on PV system power prediction based on improved similar day and HBA-BiLSTM-KELM neural network[J]. Acta Energiae Solaris Sinica,2024,45(5):508-516.
[18]段双明,吕腾飞,李军徽,等.基于改进TOPSIS-ANP-CRITIC的共享储能全寿命周期效益评估[J].储能科学与技术,2025,14(3):1210-1223.
DUAN Shuangming,LV Tengfei,LI Junhui,et al. Life cycle benefit evaluation of shared energy storage based on improved TOPSIS-ANP-CRITIC model[J]. Energy Storage Science and Technology,2025,14(3):1210-1223.
[19]杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用,2018,38(S2):1-6.
YANG Li,WU Yuqian,WANG Junli,et al. Research on recurrent neural network research[J]. Journal of Computer Applications,2018,38(S2):1-6.
[20]He Y,Xu Q,Wan J,et al. Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function[J]. Energy,2016,114:498-512.
[21]李丹,张远航,杨保华,等.基于约束并行LSTM分位数回归的短期电力负荷概率预测方法[J].电网技术,2021,45(4):1356-1364.
LI Dan,ZHANG Yuanhang,YANG Baohua,et al. Short time power load probabilistic forecasting based on constrained parallel-LSTM neural network quantile regression mode[J]. Power System Technology,2021,45(4):1356-1364.
[22]王晓东,鞠邦国,刘颖明,等.基于QR-NFGLSTM与核密度估计的风电功率概率预测[J].太阳能学报,2022,43(2):479-485.
WANG Xiaodong,JU Bangguo,LIU Yingming,et al. Probability prediction of wind power based on QR-NFGLSTM and kernel density estimation[J]. Acta Energiae Solaris Sinica,2022,43(2):479-485.
[23]王开艳,杜浩东,贾嵘,等.基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J].高电压技术,2022,48(11):4372-4388.
WANG Kaiyan,DU Haodong,JIA Rong,et al. Short-term interval probabilistic prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering,2022,48(11):4372-4388.
[24]Zhang Y,Wang J,Wang X. Review on probabilistic forecasting of wind power generation[J]. Renewable and Sustainable Energy Reviews,2014,32:255-270.
[25]万灿,崔文康,宋永华.新能源电力系统概率预测:基本概念与数学原理[J].中国电机工程学报,2021,41(19):6493-6509.
WAN Can,CUI Wenkang,SONG Yonghua. Probabilistic forecasting for power systems with renewable energy sources:Basic concepts and mathematical principles[J]. Proceedings of the CSEE,2021,41(19):6493-6509.
[26]应浩天,何旭,樊玉新,等.面向区域电网光伏调峰的火光储系统优化调度[J].太阳能学报,2025,46(6):49-57.
YING Haotian,HE Xu,FAN Yuxin,et al. Optimal scheduling of thermal-PV-storage system for regional power grid photovoltaic peak shaving [J]. Acta Energiae Solaris Sinica,2025,46(6):49-57.
|