[1]贾承造. 含油气盆地深层—超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报:自然科学版,2023,47(5):1-12.
JIA Chengzhao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 1-12.
[2]欧翔,谭凯,周楚翔. 深层钻井堵漏材料的研究现状与发展思考[J]. 材料导报,2024,38(S2):615-620.
OU Xiang, TAN Kai, ZHOU Chuxiang. Current status and development considerations of deep drilling plugging materials research[J]. Materials Reports, 2024, 38(S2): 615-620.
[3]孙金声,杨景斌,白英睿,等. 深层超深层钻井液技术研究进展与展望[J].石油勘探与开发,2024,51(4):889-898.
SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Research progress and development of deep and ultra-deep drilling fluid technology[J]. Petroleum Exploration and Development, 2024, 51(4): 889-898.
[4]马永生,蔡勋育,黎茂稳,等. 深层—超深层海相碳酸盐岩成储成藏机理与油气藏开发方法研究进展[J]. 石油勘探与开发,2024,51(4):692-707.
MA Yongsheng, CAI Xunyu, LI Maowen, et al. Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates[J]. Petroleum Exploration and Development, 2024, 51(4): 692-707.
[5]苏洋,赖锦,别康,等. 深层超深层钻井地质信息测井拾取与评价[J]. 古地理学报,2025,27(1):225-239.
SU Yang, LAI Jing, BIE Kang, et al. Well logging evaluation and characterization of geological information for deep and ultra-deep drilling wells[J]. Journal of Palaeogeography(Chinese Edition), 2025, 27(1): 225-239.
[6]赵金海,张洪宁,王恒,等. 中国石化超深层钻完井关键技术挑战及展望[J]. 钻采工艺,2024,47(2):28-34.
ZHAO Jinhai, ZHANG Hongning, WANG Heng, et al. Key technical challenges and prospects of drilling and completion in ultra-deep reservoirs, Sinopec[J]. Drilling & Production Technology, 2024, 47(2): 28-34.
[7]王春生,王哲,张权,等. 塔里木油田超深层钻井技术进展及难题探讨[J].钻采工艺,2024,47(2):59-69.
WANG Chunsheng, WANG Zhe, ZHANG Quan, et al. Progress and obstacles of ultra-deep drilling technology in Tarim Oilfield[J]. Drilling & Production Technology, 2024, 47(2): 59-69.
[8]刘岩生,张佳伟,黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报,2024,45(1):312-324.
LIU Yansheng, ZHANG Jiawei, HUANG Hongchun, et al. Key technologies and development direction for deep and ultra-deep drilling and completion in China[J]. Acta Petrolei Sinica, 2024, 45(1): 312-324.
[9]孙金声,刘伟,王庆,等. 万米超深层油气钻完井关键技术面临挑战与发展展望[J]. 钻采工艺,2024,47(2):1-9.
SUN Jinsheng, LIU Wei, WANG Qing, et al. Challenges and development prospects of oil and gas drilling and completion in myriametric deep formation in China[J]. Drilling & Production Technology, 2024, 47(2): 1-9.
[10]柳贡慧,查春青,陈添,等. 深层超深层油气安全高效开发若干关键问题与新型解决方案[J]. 石油钻探技术,2024,52(2):24-30.
LIU Gonghui, ZHA Chunqing, CHEN Tian, et al. Several key issues in safe and efficient development of deep and ultra-deep oil and gas and corresponding new solutions[J]. Petroleum Drilling Techniques, 2024, 52(2): 24-30.
[11]徐珂,杨海军,张辉,等. 塔里木盆地克拉苏构造带超深层致密砂岩气藏一体化增产关键技术与实践[J]. 中国石油勘探,2022,27(5):106-115.
XU Ke, YANG Haijun, ZHANG Hui, et al. Key technology and practice of the integrated well stimulation of ultra-deep tight sandstone gas reservoir in Kelasu Structural Belt, Tarim Basin[J]. China Petroleum Exploration, 2022, 27(5): 106-115.
[12]郭旭升. 以关键核心技术突破带动我国深层、超深层油气勘探开发突破[J]. 能源,2022,(9):46-50.
GUO Xusheng. Driving breakthroughs in deep and ultra-deep oil and gas exploration and development in China through key core technological innovations[J]. Energy, 2022, (9): 46-50.
[13]王钧泽,李黔,尹虎. 基于数字孪生技术的钻井复杂风险智能预警系统架构[J]. 石油钻探技术,2024,52(5):154-162.
WANG Junze, LI Qian, YIN Hu. Architecture of intelligent early warning system for complex drilling risks based on digital twin technology[J]. Petroleum Drilling Techniques, 2024, 52(5): 154-162.
[14]马志忠,袁则名,贾雍,等. 海洋石油实时智能钻井辅助决策技术进展[J]. 海洋石油,2023,43(3):84-89.
MA Zhizhong, YUAN Zeming, JIA Yong, et al. Development of offshore oil real-time intelligent drilling auxiliary decision-making technology[J]. Offshore Oil, 2023, 43(3): 84-89.
[15]晏琰,段慕白,黄浩. 基于趋势线法的钻井风险预警技术研究[J]. 钻采工艺,2023,46(2):170-174.
YAN Yan, DUAN Mubai, HUANG Hao. Research on drilling risk early warning technology based on trend line method[J]. Drilling & Production Technology, 2023, 46(2): 170-174.
[16]李中,殷志明,田得强. 深远海超深水钻井井控风险防控技术研究进展[J]. 钻采工艺,2024,47(4):8-17、6.
LI Zhong, YIN Zhiming, TIAN Deqiang. Research progress on well control risk management technology for deep sea and ultra-deep water drilling[J]. Drilling & Production Technology, 2024, 47(4): 8-17,6.
[17]杨进,傅超,刘书杰,等. 中国深水钻井关键技术与装备现状及展望[J].世界石油工业,2024,31(4):69-80.
YANG Jin, FU Chao, LIU Shujie, et al. Current status and prospects of key technologies and equipment for deepwater drilling in China[J]. World Petroleum Industry, 2024, 31(4): 69-80.
[18]陈勇军,武永锋,张大刚,等. 深水浮式平台性能预警管理系统开发研究[J]. 海洋工程装备与技术,2022,9(2):1-6.
CHEN Yongjun, WU Yongfeng, ZHANG Dagang, et al. Research and development of an early warning system for global performance of deepwater floating platforms[J]. Ocean Engineering Equipment and Technology, 2022, 9(2): 1-6.
[19]靳建洲,魏风奇,艾正青,等. 超深特深油气井固井关键技术进展[J]. 钻采工艺,2024,47(2):104-112.
JIN Jianzhou, WEI Fengqi, AI Zhengqing, et al. Key technologies for cementing of deep and ultra-deep oil and gas wells[J]. Drilling & Production Technology, 2024, 47(2): 104-112.
[20]侯福祥,张爱潇,徐丙贵,等. 全尺寸随钻扩眼钻具系统振动特性仿真研究[J]. 石油矿场机械,2024,53(1):1-10.
HOU Fuxiang, ZHANG Aixiao, XU Binggui, et al. Simulation study on vibration characteristics of full-size reaming while drilling system[J]. Oil Field Equipment, 2024, 53(1): 1-10.
[21]李玮,盖京明,李思琪,等. 推力可控的投球式液压随钻扩眼器[J]. 天然气工业,2023,43(12):84-90.
LI Wei, GAI Jingming, LI Siqi, et al. A newly-developed ball-activation hydraulic controllable reamer while drilling[J]. Natural Gas Industry, 2023, 43(12): 84-90.
[22]陈雪峰,李博,张晓兵,等. 塔里木山前构造盐膏层随钻扩眼钻井技术应用与认识[J]. 西部探矿工程,2022,34(9):96-99.
CHEN Xuefeng, LI Bo, ZHANG Xiaobing, et al. Application and insights of reaming-while-drilling technology for salt-gypsum formations in the Foothill Structures of the Tarim Basin[J]. West-China Exploration Engineering, 2022, 34(9): 96-99.
[23]周小君,刘洪涛,何世明,等. 库车山前盐层随钻扩眼尺寸优化研究[J]. 钻采工艺,2022,45(3):37-41.
ZHOU Xiaojun, LIU Hongtao, HE Shiming, et al. Study on size optimization of reaming while drilling in salt layer of Kuche Piedmont[J]. Drilling & Production Technology, 2022, 45(3): 37-41.
[24]汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1-11.
WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1-11.
[25]许期聪,付强,周井红,等. 四川盆地双鱼石区块特深井井身结构设计与适用性评价研究[J]. 钻采工艺,2024,47(2):83-92.
XU Qichong, FU Qiang, ZHOU Jinghong, et al. Research on casing program design and applicability evaluation of extra-deep wells in Shuangyushi Block, Sichuan Basin[J]. Drilling & Production Technology, 2024, 47(2): 83-92.
[26]佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示[J]. 天然气工业,2024,44(1):40-48.
SHE Chaoyi. Progress in ultra-deep drilling and completion technology in the Sichuan Basin and its implications for extra-deep wells of more than ten thousand meters in depth[J]. Natural Gas Industry, 2024, 44(1): 40-48.
[27]张斌,曹晓宇,周天明,等. 深井超深井钻井装备技术现状与发展趋势探讨[J]. 钻采工艺,2024,47(2):141-151.
ZHANG Bin, CAO Xiaoyu, ZHOU Tianming, et al. Discussion on current situation and development trend of drilling equipment for deep and ultra-deep wells[J]. Drilling & Production Technology, 2024, 47(2): 141-151.
[28]黄世寅,刘宝昌,孟庆南,等. SiC与碳纤维强化2A12铝合金钻杆材料的拉伸性能研究[J/OL]. 钻探工程,1-10[2025-04-25].
HUANG Shiyan, LIU Baochang, MENG Qingnan, et al. Study on tensile properties of 2A12 aluminum alloy drill pipe reinforced with SiC and carbon fiber[J/OL]. Drilling Engineering, 1-10[2025-04-25].
[29]刘聪,李慧,李亚敏,等. 石油钻杆的发展与前景分析[J]. 石油和化工设备,2025,28(1):15-20.
LIU Chong, LI Hui, LI Yamin, et al. Development and prospect analysis of petroleum drill pipe[J]. Petro & Chemical Equipment, 2025, 28(1): 15-20.
[30]刘长硕,王瑜,李立鑫,等. 特深井钻杆柱材料的研究现状与关键技术[J]. 钻探工程,2024,51(S1):1-9.
LIU Changshuo, WANG Yu, LI Lixin, et al. Current research status and key technology of drill pipe and column materials for extra deep wells[J]. Drilling Engineering, 2024, 51(S1): 1-9.
[31]马少明. 轧制温度对7075铝合金组织演变及力学性能影响[J]. 材料研究与应用,2024,18(4):656-661.
MA Shaoming. Effect of rolling temperatures on microstructure evolution and mechanical properties of 7075 aluminum alloy[J]. Materials Research and Application, 2024, 18(4): 656-661.
[32]满国祥,程林,王克虎,等. 石油钻杆的发展趋势分析[J]. 地质装备,2024,25(2):23-26.
MAN Guoxiang, CHENG Lin, WANG Kehu, et al. Analysis on the development trend of petroleum drilling pipes[J]. Equipment for Geotechnical Engineering, 2024, 25(2): 23-26.
[33]苏义脑,窦修荣,高文凯,等. 油气井随钻测量技术发展思考与展望[J].石油科学通报,2023,8(5):535-554.
SU Yinao, DOU Xiurong, GAO Wenkai, et al. Discussion and prospects of the development on measurement while drilling technology in oil and gas wells[J]. Petroleum Science Bulletin, 2023, 8(5): 535-554.
[34]苏义脑. 井下控制工程学的建立发展及创新启示[J]. 石油科技论坛,2019,38(5):1-7.
SU Yinao. Inspiration from Establishment, Development and Innovation of Downhole Control Engineering[J]. Petroleum Science and Technology Forum, 2019, 38(5): 1-7.
[35]王同良,杨梦露. 海洋油气工程数字化智能化发展现状与展望[J]. 前瞻科技,2023,2(2):105-120.
WANG Tongliang, YANG Menglu. Status and future of digital and intelligent development of offshore petroleum engineering[J]. Science and Technology Foresight, 2023, 2(2): 105-120.
[36]邹剑,高尚,兰夕堂,等. 基于有限元仿真技术的超大通径悬挂器的研制与应用[J]. 当代化工,2024,53(8):1944-1947.
ZOU Jian, GAO Shang, LAN Xitang, et al. Development and application of ultra-large diameter hanger based on finite element simulation technology[J]. Contemporary Chemical Industry, 2024, 53(8): 1944-1947.
[37]张瑞. 顶部驱动液压尾管悬挂器研制与现场试验[J]. 钻采工艺,2022,45(4):26-31.
ZHANG Rui. Development and field test of top-driven hydraulic liner hanger[J]. Drilling & Production Technology, 2022, 45(4): 26-31.
[38]于永金,夏修建,王治国,等. 深井、超深井固井关键技术进展及实践[J]. 新疆石油天然气,2023,19(2):24-33.
YU Yongjin, XIA Xiujian, WANG Zhiguo, et al. Progress and application of the key technologies of deep and ultra-deep well cementing[J]. Xinjiang Oil & Gas, 2023, 19(2): 24-33.
[39]徐星,龚楠,陈光磊,等. 新型尾管悬挂器坐挂机构关键技术研究[J]. 石油和化工设备,2023,26(6):46-50.
XU Xing, GONG Nan, CHEN Guanglei, et al. Key research of hanger setting mechanism on new type liner hanger[J]. Petro & Chemical Equipment, 2023, 26(6): 46-50.
[40]汪海阁,乔磊,杨雄,等. 中石油页岩油气工程技术现状及发展建议[J].石油学报,2024,45(10):1552-1564.
WANG Haige, QIAO Lei, YANG Xiong, et al. Current status and development recommendations for CNPC’s shale oil and gas engineering technology[J]. Acta Petrolei Sinica, 2024, 45(10): 1552-1564.
[41]曾义金,金衍,周英操,等. 深层油气钻采技术进展与展望[J]. 前瞻科技,2023,2(2):32-46.
ZWNG Yijin, JIN Yan, ZHOU Yingchao, et al. Progress and prospect of deep oil & gas drilling and production technologies[J]. Science and Technology Foresight, 2023, 2(2): 32-46.
[42]呼怀刚,黄洪春,汪海阁,等. 国内外PDC钻头新进展与发展趋势展望[J]. 石油机械,2024,52(2):1-10.
HU Huaigang, HUANG Hongchun, WANG Haige, et al. New progress and development trends of PDC bits in China and abroad[J]. China Petroleum Machinery, 2024, 52(2): 1-10.
[43]兰永飞,韩玉香,陈明勇,等. 扭力冲击器-螺杆复合钻进工艺应用实践[J]. 钻探工程,2023,50(S1):399-404.
LAN Yongfei, HAN Yuxiang, CHEN Mingyong, et al. The application and practical of torque impactor + screw drilling tool composite drilling technology[J]. Drilling Engineering, 2023, 50(S1): 399-404.
[44]何超,邓虎,罗祝涛,等. 扭力冲击器流体仿真优化与试验[J]. 钻采工艺,2023,46(4):26-32.
HE Chao, DENG Hu, LUO Zhutao, et al. Experiment of fluid simulation for torsion impactor[J]. Drilling & Production Technology, 2023, 46(4): 26-32.
[45]孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(5):73-81.
SUN Jinsheng, HUANG Xianbin, LV Kaihe, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5): 73-81.
[46]孙金声,王韧,龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.
SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 1-30.
[47]YANG J, WANG R, SUN J S, et al. Comb polymer/layered double hydroxide(LDH) composite as an ultrahigh temperature filtration reducer for water-based drilling fluids[J]. Applied Surface Science, 2024, 645: 158884.
[48]YANG J, WANG R, SUN J S, et al. Nano-laponite/comb polymer composite as a rheological modifier for water-based drilling fluids[J]. ACS Applied Nano Materials, 2023, 6(14): 13453-13465.
[49]孙金声,蒋官澄,贺垠博,等. 油基钻井液面临的技术难题与挑战[J].中国石油大学学报(自然科学版),2023,47(5):76-89.
SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 76-89.
[50]黄津松,张家旗,王建华,等. 国内油基钻井液研发现状与思考[J]. 化工管理,2020,(33):130-133.
HUANG Jinsong, ZHANG Jiaqi, WANG Jianhua, et al. Current situation and suggestion of domestic oil-based drilling fluid[J]. Chemical Engineering Management, 2020, (33): 130-133.
[51]王建华,王立辉,杨海军,等. 抗高温高密度油基钻井液体系DR-OBM[J]. 石油科技论坛,2015,34(S1):56-58.
WANG Jianhua, WANG Lihui, YANG Haijun, et al. High temperature resistant and high density oil-based drilling fluid system–RD-ROM[J]. Petroleum Science and Technology Forum, 2015, 34(S1): 56-58.
[52]王建华,张家旗,谢盛,等. 页岩气油基钻井液体系性能评估及对策[J].钻井液与完井液,2019,36(5):555-559.
WANG Jianhua, ZHANG Jiaqi, XIE Sheng, et al. Evaluation and improvement of the performance of oil base drilling fluids for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 555-559.
[53]王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29-33.
WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29-33.
[54]程荣超,王建华,闫丽丽,等. 油基钻井液用抗高温树脂类封堵剂的研制[J]. 当代化工研究,2021,(5):160-162.
CHENG Rongchao, WANG Jianhua, YAN Lili, et al. Development of high temperature resistant resin plugging agent for oil-based drilling fluid[J]. Modern Chemical Research, 2021, (5): 160-162.
[55]孙金声,刘凡,程荣超,等. 机器学习在防漏堵漏中研究进展与展望[J]. 石油学报,2022,43(1):91-100.
SUN Jinsheng S, LIU Fan, CHENG Rongchao, et al. Research progress and prospects of machine learning in lost circulation control[J]. Acta Petrolei Sinica, 2022, 43(1): 91-100.
[56]刘凡,程荣超,郝惠军,等. 裂缝性地层固化类堵漏材料井下运移仿真模拟研究[J]. 钻井液与完井液,2021,38(5):560-567.
LIU Fan, CHENG Rongchao, HAO Huijun, et al. Simulation study on movement of solidifying LCMs for controlling mud losses into fracturing formations[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 560-567.
[57]ZHAO Z, SUN J S, LIU F, et al. High-temperature-resistant thermal shape memory polymers as lost circulation materials for fracture formations[J]. SPE Journal, 2023, 28(5): 2629–2641.
[58]刘凡,刘钦政,郝惠军,等. 高强度可固化树脂堵漏剂PMMM研制与评价[J]. 钻井液与完井液,2021,38(6):671-676.
LIU Fan, LIU Qinzheng, HAO Huijun, et al. Synthesis and evaluation of a high strength curable resin LCM PMMM[J]. Drilling Fluid & Completion Fluid, 2021, 38(6): 671-676.
|