[1] 隋迎光. 基于专家系统的钻井复杂情况及事故诊断方法研究[J]. 中国科技信息,2008,16:72-73.
SUI Yingguang.Research on drilling complex situation and fault diagnosis method based on expert system[J]. China Science add Techonlogy Information,2008,16:72-73.
[2] 王江萍,鲍泽富. 钻井复杂情况监测与诊断技术及其发展[J]. 石油机械,2009,37(10):82-87.
WANG Jiangping,BAO Zefu. Monitoring and diagnosis technology of driling compelex situation and its development[J]. ChinaPetroleum Machinery,2009,37(10):82-87.
[3] 李宏波,罗平亚,白杨,等. 机器学习算法概述及其在钻井工程中的应用[J]. 新疆石油天然气,2022,18(1):1-13.
LI Hongbo,LUO Pingya,BAI Yang,et al. Summary for machine learning algorithms and their applications in drilling engineering[J]. Xinjiang oil & Gas,2022,18(1):1-13.
[4] 刘晗,夏小兰.基于WITS协议的测量数据远程传输功能的应用[J]. 内蒙古石油化工,2015,41(18):16-21.
LIU Han,XIA Xiaolan.The application of remote transmission of measurement data based on WITS protocol[J]. Inner Mongolia petrochemical industry,2015,41(18):16-21.
[5] 王敏生,光新军,耿黎东. 人工智能在钻井工程中的应用现状与发展建议[J]. 石油钻采工艺,2021,43(4):420–427.
WANG Minsheng,GUANG Xinjun,GENG Lidong. Application status and development suggestions of artificial intelligence in drilling engineering[J]. Oil Drilling & Production Technology,2021,43(4): 420–427.
[6] 孙伟峰,刘凯,张德志,等. 结合钻井工况与Bi-GRU的溢流与井漏监测方法[J].石油钻探技术,2023,51(3):37-44.
SUN Weifeng,LIU Kai,ZHANG Dezhi,et al. Combining drilling conditions with Bi GRU overflow and leakage monitoring methods [J]. Petroleum Drilling Technology, 2023, 51 (3): 37-44.
[7] 曾义金,王敏生,光新军,等. 中国石化智能钻井技术进展与展望[J].石油钻探技术,2024,52(5):1-9.
ZENG Yijin, WANG Minsheng, GUANG Xinjun, et al. Progress and prospects of Sinopec’s intelligent drilling technologies [J]. Petroleum DrillingTechniques, 2024, 52(5):1−9.
[8] 孙金声,刘凡,程荣超,等.机器学习在防漏堵漏中研究进展与展望[J].石油学报,2022,43(1):91-100.
SUN Jinsheng,LIU Fan,CHENG Rongchao,et al. Research progress and prospects of machine learning in lost circulation control[J]. Acta Petrolei Sinica,2022,43(1):91-100.
[9] 张晓诚,霍宏博,林家昱,等. 渤海油田裂缝性油藏地质工程一体化井漏预警技术[J]. 石油钻探技术,2022, 50(6):72-77.
ZHANG Xiaocheng, HUO Hongbo, LIN Jiayu, et al. Integrated geology-engineering early warning technologies for lost circulation of fractured reservoirs in Bohai Oilfield [J]. Petroleum Drilling Techniques,2022, 50(6):72-77.
[10] 李松,康毅力,李大奇,等. 复杂地层钻井液漏失诊断技术系统构建[J].钻井液与完井液,2015,32(6):89-95.
LI Song,KANG Yili,LI Daqi,et al. Diagnosis system for characterizing lost circulation in troublesome formations[J].Drilling Fluid & Completion Fluid,2015,32(6):89-95.
[11] 彭磊,罗江伟,赵宏波,等. 长庆油田米绥新区易漏地层漏失机理[J]. 新疆石油天然气,2023,19(4):10-19.
PENG Lei,LUO Jiangwei,ZHAO Hongbo,et al. The Lost Circulation Mechanism in Formations Prone to Lost Circulation at Misui Block in Changqing Oilfield[J]. Xinjiang Oil & Gas,2023,19(4):10-19.
[12] 张学洪. 基于案例推理的井漏复杂事故分析方法研究[D]. 四川成都:西南石油大学,2016.
ZHANG Xuhong. Study on the method of complex well loss accident analysis based on case-based reasoning[D]. Chendu,Sichuan:Southwest Petroleum University,2016.
[13] AHMED S A,MAHMOUD A A,ELKATATNY S,et al. Predic-tiong of pore and fracture pressures using support vector machina[R].IPTC19523,2019.
[14] 隗敏.小井眼循环压耗精确计算方法研究及应用[J].石油矿场机械,2017,46(1):71–75.
WEI Min.Research and application of accurate consumption calculation method for slim-hole cyclic pressure [J].Oil Field Equipment,2017,46(1):71–75.
[15] 陈志伟. 定录导一体化数据传输与监控系统建设[J]. 录井工程, 2020, 31(1): 102-107.
CHEN Zhiwei. Construction of integrated orientation, mud logging and geosteering data transmission and monitoring system[J]. Mud Logging Engineering,2020,31(1): 102-107.
[16] 郑卓,宋峙潮,陈波,等. 基于 XGBoost 算法的井漏预警模型研究[J]. 石油化工应用,2023,42(1):112-115.
ZHENG Zhuo,SONG Zhichao,CHEN Bo,et al. Research on leakage warning model based on XGBoost algorithm[J]. Petrochemical Industry Application,2023,42(1):112-115.
[17] 涂曦予,于露,耿子辰,等. 基于大规模时间序列的井漏事故预警方法[J].信息技术,2018,42(12):1-4.
TU Xiyu,YU Lu,GENG Zichen,et al. Research on intelligent warning of loss circulation based on large-scale time series data[J]. Information Technology,2018,42(12):1-4.
[18] 张正,赖旭芝,陆承达,等. 基于贝叶斯网络的钻进过程井漏井涌事故预警[J]. 探矿工程 ( 岩土钻掘工程 ),2020, 47(4): 114-121.
ZHANG Zheng,LAI Xuzhi,LU Chengda,et al. Lost circulation and kick accidents warning based on Bayesian network for the drilling process[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2020,47(4): 114-121.
[19] UNRAU S,TORRIONE P. Adaptive real-time machine learning-based alarm system for influx and loss detectiong[R]. SPE187155,2017.
[20] 王鑫,张奇志. 改进麻雀搜索算法优化支持向量机的井漏预测[J]. 科学技术与工程,2022,22(34):15115-15122.
WANG Xin, ZHANG Qizhi. Improved Sparrow Search Algorithm to Optimize Lost Circulation Prediction of Support Vector Machine[J]. Science Technology and Engineering,2022,22(34):15115-15122.
[21] 尹虎,王海彪. 基于 CBR 的井漏复杂事故的智能预警方法研究[J].科技通报,2018,34( 4) :195-199.
YIN Hu,WANG Haibiao. Intelligent Research of Complex Loss Circulation’Warning
Based on CBR[J].Bulletin of Science Technology,2018,34( 4) :195-199.
[22] 和鹏飞,刘晓宾,陈真,等 . 基于深度神经网络模型的钻井井漏预测研究[J].天津科技,2019,46(S1):21-23.
HE Pengfei,LIU Xiaobin,CHEN Zhen,et al. Research on prediction of lost circulation based on deep neural network model[J]. Tianjin Science & Technology,2019,46(S1):21-23.
[23] HAN L, SONG X, ZHANG H, et al. Research on Lost Circulation Diagnosis Model Based on SMOTE-Tomek and Stacking Ensemble Learning[C]//International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, 2023, 86915: V009T11A006.
[24] SUN W, LI W, ZHANG D, et al. Lost circulation monitoring using bi-directional LSTM and data augmentation[J]. Geoenergy Science and Engineering, 2023, 225: 211660.
[25] 宋先知,郭勇,向冬梅,等.呼图壁背斜水基钻井液井壁失稳机理多场耦合分析[J]. 新疆石油天然气,2023,19(4):1-9.
SONG Xianzhi,GUO Yong,XIANG Dongmei,et al. Multi-Field Coupling Analysis of Wellbore Instability in Hutubi Anticline While Using Water-Based Drilling Fluid[J]. Xinjiang Oil & Gas,2023,19(4):1-9.
[26] 王永刚,段宏臻,杨友刚,等. 综合录井技术在工程预警卡钻中的应用-以柴达木盆地英雄岭构造带英西地区为例[J]. 化学工程与装备,2020(11):96-98.
WANG Yonggang,DUAN HongZhen,YANG YouGang,et al. Application of integrated mud logging technology in engineering early-warning sticking -a case study of yingxi area in yingxiongling structural belt, Qaidam Basin[J]. Chemical Engineering & Equipment,2020(11):96-98.
[27] 文健安,曾令奇,王鑫珺,等. 川东地区梁山组钻井施工录井风险预警机制[J]. 天然气技术与经济,2023,17(1):50-53.
WEN Jian'an,ZENG Lingqi,WANG Xinjun,et al. An early warning system on mud-logging risks during drilling in Liangshan Formation,eastern Sichuan Basin[J]. Natural Gas Technology and Economy,2023,17(1):50-53.
[28] 富浩,张涛,李玉梅,等. 基于井下参数的 PCA-SVM卡钻预测研究[J]. 计算机仿真,2021,38(12): 386-390.
FU Hao, ZHANG Tao, LI Yumei,et al. Research on PCA-SVM stuck prediction based on downhole parameters[J]. Computer Simulation, 2021,38(12): 386-390.
[29] 刘建明,李玉梅,张涛,等. 一种基于 PCA-RF 的卡钻预测方法[J]. 北京信息科技大学学报:自然科学版,2021,36(1): 18-22.
LIU Jianming,LI Yumei, ZHANG Tao,et al. Research on PCARF-based sticking prediction method[J]. Journal of Beijing Information Science & Technology University (Natural Science Edition),2021,36(1): 18-22.
[30] 苏晓眉,张涛,李玉飞,等.基于 K-Means 聚类算法的沉砂卡钻预测方法研究[J].钻采工艺,2021,44( 3) : 5-9.
SU Xiaomei,ZHANG Tao,LI Yufei,et al.Research on the Sticking Prediction Method Based on K-Means Clustering Algorithm[J].Drilling and Production Technology,2021,44( 3) : 5-9.
[31] 朱硕,宋先知,李根生,等. 钻柱摩阻扭矩智能实时分析与卡钻趋势预测[J]. 石油钻采工艺,2021,43(4):428-435.
ZHU Shuo,SONG Xianzhi,LI Gensheng,et al. Intelligent real-time drag and torque analysis and sticking trend prediction of drill string[J]. Oil Drilling & Production Technology,2021,43(4):428-435.
[32] 舒惠龙,田中兰,付利,等. 水平井井眼清洁定量化监测评价技术[J]. 石油钻探技术,2023,51(2):68-73.
SHU Huilong,TIAN Zhonglan,FU Li,et al. A quantitative monitoring and evaluation technology for hole cleaning of horizontal well [J]. Petroleum Drilling Techniques,2023,51(2):68-73.
[33] 曾家新,吴申尧,罗艺,等. 井眼清洁监测系统在西南油气田的工程应用[J]. 录井工程, 2021, 32(2): 96-101.
ZENG Jiaxin,WU Shenyao, LUO Yi,et al. Engineering application of borehole cleaning monitoring system in Southwest Oil and Gas Field[J]. Mud Logging Engineering,2021,32(2): 96-101.
[34] 王茜,张菲菲,李紫璇,等.基于钻井模型与人工智能相耦合的实时智能钻井监测技术[J].石油钻采工艺,2020,42 (1) : 6-15.
WANG Qian,ZHANG Feifei,LI Zixuan,et al. Real-time intelligent drilling monitoring technique based on the coupling of drilling model and artificial intelligence[J].Oil Drilling & Production Technology,2020,42 (1) :6-15.
[35] 李紫璇,张菲菲,祝钰明,等. 钻井模型与机器学习耦合的实时卡钻预警技术[J]. 石油机械, 2022, 50(4): 15-21.
LI Zixuan, ZHANG Feifei, ZHU Yuming, et al. Real-time pipe sticking early warning technology based on coupling of drilling model and machine learning[J]. Petroleum Machinery , 2022, 50(4): 15-21.
[36] 张治发,钱浩东,张帆,等.基于信息平台的水平井井眼清洁状况实时预判与参数优化 [J]. 钻采工艺,2021,44(6) : 49-54.
ZHANG Zhifa,QIAN Haodong,ZHANG Fan,et al. Real-time Evaluation and Optimization of Horizontal Well Cleaning Based on Information Platform [J].Drilling and Production Technology,2021,44(6) : 49-54.
[37] ETMINAN M, JAMALI J, RIAHI M A. Formation pore pressure prediction using velocity inversion in Southwest Iran[J]. Petroleum science and technology, 2012, 30(1): 28-34.
[38] HOTTMANN C E, JOHNSON R K. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology, 1965, 17(6): 717-722.
[39] FERTL W H, CHILINGARIAN G V. Detection and evaluation of geopressured subsurface formations based on dielectric (electromagnetic wave propagation) measurements[J]. Energy sources, 1988, 10(3): 195-200.
[40] ABDULMALEK A S, ELKATATNY S, ABDULRAHEEM A, et al. Pore pressure prediction while drilling using fuzzy logic[C]//SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. OnePetro, 2018.
[41] RASHIDI M, ASADI A. An artificial intelligence approach in estimation of formation pore pressure by critical drilling data[C]//52nd US Rock Mechanics/Geomechanics Symposium. OnePetro, 2018.
[42] HADI F, ECKERT A, ALMAHDAWI F. Real-time pore pressure prediction in depleted reservoirs using regression analysis and artificial neural networks[C]//SPE Middle East Oil and Gas Show and Conference. OnePetro, 2019.
[43] 张辉, 高德利. 钻头下部未钻开地层的孔隙压力随钻预测[J]. 天然气工业, 2005(03): 79-80.
ZHANG Hui, GAO Deli. Prediction of pore pressure while drilling in undrilled formations under a bit [J]. Natural Gas Industry, 2005,(3): 79-80.
[44] 吴超, 陈勉, 金衍. 基于地震属性分析的地层孔隙压力钻前预测模型[J]. 石油天然气学报(江汉石油学院学报), 2006,(5): 66-69.
Wu Chao, Chen Mian, Jin Yan. Pre-drilling prediction model of formation pore pressure based on seismic attribute analysis [J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2006,(5): 66-69.
[45] 孙伟峰,李威桦,王健,等. 基于C#与Python混合编程的钻井溢漏风险智能识别平台[J]. 实验技术与管理, 2021, 38(11): 166-172.
SUN Weifeng,LI Weihua,WANG Jian,et al. Intelligent identification platform of drilling kick and loss risk based on mixed programming of C# and Python[J]. Experimental Technology and Management,2021,38(11): 166-172.
[46] 王钰豪,郝家胜,张帆,等. 钻井溢流风险的自适应LSTM预警方法[J]. 控制理论与应用,2022,39(3): 441 –448.
WANG Yuhao,HAO Jiasheng,ZHANG Fan,et al. Adaptive LSTM early warning method for kick detection in drilling[J]. Control Theory & Applications,2022,39(3): 441-448.
[47] 李玉飞, 张博,孙伟峰. 基于 SVM 和 D-S 证据理论的早期溢流智能识别方法[J]. 钻采工艺 ,2020,43(5): 27-30.
LI Yufei,ZHANG Bo,SUN Weifeng. Research on intelligent early kick identifification method based on SVM and D-S evidence theory[J]. Drilling & Production Technology,2020,43(5): 27-30.
[48] 李仙琳,左信,高小永,等. 基于核主成分分析-半监督极限学习机的钻井溢流诊断方法[J].油气地质与采收率,2022,29(1):190-196.
LI Xianlin,ZUO Xin,GAO Xiaoyong,et al. Intelligent diagnosis method for kick based on KPCA-SSELM[J]. Petroleum Geology and Recovery Efficiency,2022,29(1):190-196.
[49] 葛亮,滕怡,肖国清,等. 基于井下环空参数的溢流智能预警技术研究[J]. 西南石油大学学报:自然科学版,2023,45(2):126-134.
GE Liang,TENG Yi, XIAO Guoqing,et al. Research on over flow intelligent warning technology based on downhole annulus parameters[J]. Journal of Southwest Petroleum University( Science & Technology Edition),2023,45(2): 126-134.
[50] 晏琰,段慕白,黄浩. 基于趋势线法的钻井风险预警技术研究[J]. 钻采工艺,2023,46(2):170-174.
YAN Yan,DUAN Mubai,HUANG Hao. Research on Drilling Risk Early Warning Technology Based on Trend Line Method[J]. Drilling and Production Technology,2023,46(2):170-174.
[51] ZHU Z, ZHOU D, YANG D, et al. Early Gas Kick Warning Based on Temporal Autoencoder[J]. Energies, 2023,16(12):4606.
[52] 王彪,李军,杨宏伟,等. 基于工程参数变化趋势的溢流早期智能检测方法[J]. 石油钻探技术,2024,52(5):145−153.
WANG Biao, LI Jun, YANG Hongwei, et al. An early intelligent kick detection method based on variation trend of engineering parameters [J]. Petroleum Drilling Techniques, 2024, 52(5):145−153.
|