Xinjiang Oil & Gas ›› 2025, Vol. 21 ›› Issue (2): 35-44.DOI: 10.12388/j.issn.1673-2677.2025.02.004

• OIL AND GAS EXPLORATION • Previous Articles     Next Articles

An Intelligent Prediction Method for Drilling Stuck Risk Based on Mechanism Data Fusion

  

  1. 1. Engineering Technology Management Department,Sinopec Jianghan Oilfield Company,Qianjiang 433124,Hubei,China;
    2. China University of Petroleum (Beijing),Changping 102249,Beijing,China;
    3. Drilling Engineering Technology Research Center,Sinopec Research Institute of Petroleum Engineering Co.,Ltd.,Changping 102249,Beijing,China
  • Online:2025-06-30 Published:2025-06-30

机理数据融合的钻井阻卡风险智能预测方法

  

  1. 1.中国石化江汉油田工程技术管理部,湖北潜江 433124;
    2.中国石油大学(北京),北京昌平 102249;
    3.中国石化石油工程技术研究院有限公司钻井工程技术研发中心,北京昌平 102206
  • 通讯作者: 杨彦龙(2001-),中国石油大学(北京)石油工程专业在读硕士,目前从事智能钻完井方面研究。(E-mail)yyanlong666@163.com
  • 作者简介:张玉强(1985-),2008年毕业于西安石油大学钻井工程专业,本科,高级工程师,目前从事优快钻完井研究与管理工作。(E-mail)zhangyq3236.jhyt@sinopec.com
  • 基金资助:

    国家自然科学基金面上项目“超深井钻井时效智能分析与优化方法”(52474015)

Abstract:

Stuck pipe incidents significantly disrupt drilling operations and cause major economic losses. Traditional physics-based models for stuck pipe prediction and analysis are subjective with large errors,while intelligent models suffer from high false alarm rates and low interpretability. To address these issues,an unsupervised stuck pipe risk evaluation method based on fuzzy mathematics was proposed. This approach involves:1) establishing a tubular mechanics model to quantify wellbore friction characteristics;2) constructing a deep autoencoder to detect abnormal parameters through reconstruction error analysis;and 3) developing a dual-factor membership function for a comprehensive fuzzy evaluation of friction coefficient trends and reconstruction errors. This method avoids the dependence of the conventional supervised learning on labeled data,integrates the interpretability of mechanistic models with the generalization ability of data-driven models,and creates a physics-constrained intelligent risk assessment framework. Tests using real drilling data show that this model effectively identifies early signs of stuck pipe. It improves warning accuracy by 7.1%,compared to the single-parameter methods,reduces false alarms,and delivers a 30-minute-earlier alert. The proposed method provides a promising new technique for predicting downhole complex issues and possesses significant application potential.

Key words:

"> stuck pipe prediction, fuzzy mathematics, soft-string model, friction calculation, autoencoder

摘要:

卡钻事故严重制约着钻井过程的正常进行,并造成大量的经济损失。现有卡钻预测分析的物理模型方法存在主观性强、误差大等缺陷,智能模型方法存在虚警高、解释性差等问题。针对上述问题,研究提出基于模糊数学的卡钻风险无监督融合评价方法。首先,建立管柱力学软杆模型反演摩阻系数,量化井筒摩擦特征;其次,构建深度自编码器模型,通过重构误差的分析实现阻卡风险的异常参数检测;最后,建立双因素隶属度函数体系,将摩阻系数趋势特征与重构误差统计特征进行模糊数学综合评判。该方法突破传统监督学习对标注数据的依赖,通过机理模型的可解释性与数据模型的泛化能力互补,形成具有物理约束的智能风险评估框架。研究成果通过某油田区块的实钻数据验证,该模型能有效识别卡钻早期征兆,相较于单一参数预警方法,综合预警准确率提升7.1%,虚警显著减少,并实现了提前30 min报警,为井下复杂工况的智能预判提供了新的技术路径,具有较大的工程应用价值和前景。

关键词:

卡钻预测, 模糊数学, 软杆模型, 摩阻反演, 自编码器

CLC Number: