[1]卢雪梅.DeepSeek快速接入油气领域[J].石油与天然气地质,2025,46(1):2.LU Xuemei. DeepSeek quickly access to the oil and gas field[J]. Oil & Gas Geology,2025,46(1):2.
[2]李剑峰. 油气工业数字化智能化发展趋势[J]. 石油科技论坛,2023,42(3):10-21.LI Jianfeng. The trend of digital and intelligent development in the oil and gas industry[J]. Petroleum Technology Forum,2023,42(3):10-21.
[3]李根生,宋先知,田守嶒.智能钻井技术研究现状及发展趋势[J].石油钻探技术,2020,48(1):1-8.LI Gensheng,SONG Xianzhi,TIAN Shouceng. Research status and development trend of intelligent drilling technology[J]. Petroleum Drilling Techniques,2020,48(1):1-8.
[4]武魏楠. 油气行业智能化:创新未来之路[J]. 能源,2023,(10):47-49.WU Weinan. Intelligence in the oil and gas industry:the path to an innovative future[J].Energy,2023,(10):47-49.
[5]王同良,杨梦露. 海洋油气工程数字化智能化发展现状与展望[J]. 前瞻科技,2023,2(2):105-120. WANG Tongliang,YANG Menglu. The current status and prospects of digital and intelligent development in offshore oil and gas engineering[J]. Forward Technology,2023,2(2):105-120.
[6]李根生,宋先知,祝兆鹏,等.智能钻完井技术研究进展与前景展望[J].石油钻探技术,2023,51(4):35-47.LI Gensheng,SONG Xianzhi,ZHU Zhaopeng,et al. Research progress and prospect of intelligent drilling and completion technology[J]. Petroleum Drilling Techniques,2023,51(4):35-47.
[7]周福建,李根生,刘皓,等.致密油气藏精准压裂-提高采收率一体化技术发展现状及建议[J].前瞻科技,2023,2(2):75-88.ZHOU Fujian,LI Gensheng,LIU Hao,et al. Development status and suggestions of integrated technology of precision fracturing and enhanced oil recovery in tight reservoirs[J]. Prospective Science and Technology,2023,2(2):75-88.
[8]陈国凯.ChatGPT技术原理及未来影响研究[J].无线互联科技,2023,20(12):66-68.CHEN Guokai. Research on the principle and future influence of ChatGPT technology[J]. Wireless Internet Technology,2023,20(12):66-68.
[9]赵觉珵. ChatGPT是颠覆性突破吗[N]. 环球时报,2023-02-10(8).ZHAO Juecheng. Is ChatGPT a disruptive breakthrough[N]. Global Times,2023-02-10(8).
[10]董志明,胡忠奇,刘赵阳,等.作战仿真想定智能化生成研究综述[J].系统仿真学报,1-19[2025-04-23].DONG Zhiming,HU Zhongqi,LIU Zhaoyang,et al. A review of intelligent generation of combat simulation scenarios[J]. Journal of System Simulation,1-19 [2025-04-23].
[11]钟尹明,柯迪丽娅·帕力哈提,白佳帅,等.基于GRU神经网络的PDC钻头磨损实时监测模型[J].新疆石油天然气,2024,20(2):21-28.ZHONG Yinming,PALIHATI Kediliya,BAI Jiashuai,et al. Real-time monitoring model of PDC bit wear based on GRU neural network[J]. Xinjiang Oil & Gas,2024,20(2):21-28.
[12]刘海军,温赞玲.深度求索DeepSeek:人工智能、技术创新与新质生产力[J].当代经济管理,1-13[2025-04-23].LIU Haijun,WEN Zanling. DeepSeek :artificial intelligence,technological innovation and new productivity[J]. Contemporary Economic Management,1-13[2025-04-23].
[13]BOUCHRA A,HANANE K,MOHAMED L. Evaluating ChatGPT and DeepSeek for science education:A comparative analysis of AI-Powered learning assistants[C]. The International Symposium on Gerenrative AI and Education(ISGAIE),2005:1-9.
[14]丁领兵,刘学军,崔北亮.基于动态知识图谱和深度神经网络的会话推荐方法[J].计算机工程与设计,2023,44(3):746-754.DING Lingbing,LIU Xuejun,CUI Beiliang. Session recommendation method based on dynamic knowledge graph and deep neural networks[J]. Computer Engineering and Design,2023,44(3):746-754.
[15]SINGH S,BANSAL S,SADDIK A E,et al. From ChatGPT to DeepSeek AI:a comprehensive analysis of evolution,deviation,and future implications in AI-Language Models[J]. arXiv:2504.03219.
[16]杨波,吴宁.智能化综采管理平台中多源异构数据处理[J].陕西煤炭,2020,39(3):162-165.YANG Bo,WU Ning. Multi-source heterogeneous data processing in intelligentfully mechanized mining management platform[J]. Shaanxi Coal,2020,39(3):162-165.
[17]SUPRIYADI E. DeepSeek and the Evolution of Generative AI[J]. Available at SSRN 5113178,2025.
[18]SONG L,DING X,ZHANG J,et al. Discovering knowledge deficiencies of language models on massive knowledge base[J]. arXiv:2503.23361.
[19]盛茂,李根生,田守嶒,等.人工智能在油气压裂增产中的研究现状与展望[J].钻采工艺,2022,45(4):1-8.SHENG Mao,LI Gensheng,TIAN Shouceng,et al. Research status and prospect of artificial intelligence in oil and gas fracturing stimulation[J]. Drilling & Production Technology,2022,45(4):1-8
[20]王婕婷,张泽珑,李飞江,等.基于图神经网络的时序信号异常检测方法[J].西北大学学报:自然科学版,2025,55(2):2025-02-011.WANG Jieting,ZHANG Zelong,LI Feijiang,et al. A time series signal anomaly detection method based on graph neural network[J]. Journal of Northwest University(Natural Science Edition),2025,55(2):2025-02-011.
[21]王兆鹏.DeepSeek时代学术生态的变化[J].天府新论,2025,(3):8-12.WANG Zhaopeng. The change of academic ecology in the era of DeepSeek[J]. New Horizons from Tianfu,2025,(3):8-12.
[22]唐亚林.AI与人脑共演:DeepSeek搜索推理之术与文科学术进阶之道[J].天府新论,2025,(3):1-7.TANG Yalin. Co-evolution of AI and human brain :DeepSeek 's search and reasoning and the way of academic advancement of liberal arts[J]. New Horizons from Tianfu,2025,(3):1-7.
[23]GUO D,ZHU Q,YANG D,et al. DeepSeek-Coder:When the Large Language model meets programming-The rise of code intelligence[J]. arXiv:2401.14196.
[24]HONG T,HU M. Opportunities,challenges,and regulatory responses to China’s AI computing power development under DeepSeek’s changing landscape[J]. International Journal of Digital Law and Governance,2025(0).
[25]渠沛然. 油气行业智能化发展还需不断闯关[N]. 中国能源报,2023,14(11).QU Peiran. The intelligent development of the oil and gas industry still needs to constantly overcome challenges[N]. China Energy News,2023,14(11).
[26]ZHANG Y,MAO J,MAO J,et al. Towards sustainable oil/gas fracking by reusing its process water:a review on fundamentals,challenges,and opportunities[J]. Journal of Petroleum Science and Engineering,2022,213:110422.
[27]BAI L,CHEN S,WANG P,et al. DeepSeek or ChatGPT:Can brain‐computer interfaces/brain‐inspired computing achieve leapfrog development with large AI models?[J]. Brain‐X,2025,3(1):e70021.
[28]宫敬,吴冕,赵周丙,等.油气管网行业大模型的思考、研究及应用[J].油气储运,2025,44(4):379-393.GONG Jing,WU Mian,ZHAO Zhoubing,et al. Thinking,research and application of large model of oil and gas pipeline network industry[J]. Oil & Gas Storage and Transportation,2025,44(4):379-393.
[29]油气行业如何向数字化智能化转型?[N].中国石油报,2022-12-13(6). How does the oil and gas industry transition towards digitalization and intelligence? [N]. China Petroleum News,2022-12-13(6).
[30]张思远,李欢. 国内智能化油气储运管网的发展与应用[J]. 山东化工,2023,52(6):145-148.ZHANG Siyuan,LI Huan. The development and application of intelligent oil and gas storage and transportation pipeline networks in China[J]. Shandong Chemical,2023,52(6):145-148.
[31]BEVARA R V K,MANNURU N R,LUND B D,et al. Beyond ChatGPT:How DeepSeek R1 may transform academia and libraries?[J]. Library Hi Tech News,2025.
[32]NAZIR A,WANG Z. A comprehensive survey of ChatGPT:Advancements,applications,prospects,and challenges[J]. Meta-radiology,2023:100022
[33]HADI M U,QURESHI R,SHAH A,et al. Large language models:a comprehensive survey of its applications,challenges,limitations,and future prospects[J]. Authorea Preprints,2023.
[34]NEHA F,BHATI D. A survey of DeepSeek models[J]. Authorea Preprints,2025.
[35]WANG L. Dynamic chain-of-thought:towards adaptive deep reasoning[J]. arXiv:2502.10428.
[36]FU J,GE X,ZHENG K,et al. LLMPopcorn:An empirical study of LLMs as assistants for popular micro-video generation[J]. arXiv:2502.12945.
[37]蒲万芬,靳星,唐晓东,等.基于BP神经网络的低渗透底水油藏油井见水模式预测模型[J].新疆石油天然气,2024,20(2):37-47.PU Wanfen,JIN Xing,TANG Xiaodong,et al. Prediction model of water breakthrough patterns of low-permeability bottom water reservoirs based on BP neural network[J]. Xinjiang Oil & Gas,2024,20(2):37-47.
[38]王广伟,马忠汉.基于DeepSeek的智能采煤系统研究[J].中国煤炭工业,2025,(4):80-81.WANG Guangwei,MA Zhonghan. Research on intelligent coal mining system based on DeepSeek[J]. China Coal Industry,2025,(4):80-81.
[39]CHENG L,HU M,HONG T. Profiling elements,risks,and governance of artificial intelligence:implications from DeepSeek[J]. International Journal of Digital Law and Governance,2025(0).
[40]PIASTOU M. Efficiency and safety of the DeepSeek R1 model compared to OpenAI models[J]. Постулат,2025(2).
|