Multi-cluster perforation staged fracturing of horizontal well has become one of the key technologies for completion and stimulation in unconventional oil and gas reservoirs. However,the fractures of the central perforation clusters in each fracturing stage are significant affected by stress interference from the fractures of heel and toe clusters,leading to substantial propagation resistance of the central cluster fractures. This is a major cause of the unbalanced propagation of multi-cluster fractures. This study optimized the design of non-uniform perforation distribution pattern between clusters to regulate the perforation parameters,balance the fluid distribution among clusters,mitigate the stress interference between fractures,and promote the balanced propagation of fractures. Therefore,a multi-stage,multi-cluster fracture propagation model that accounts for stress superposition between stages/clusters was established. The model was used to compare and analyze the fracture propagation patterns and mechanisms of spindle-shaped,sloped and uniform perforating patterns. The difference in fracture length and height propagation morphology was utilized to assess the equilibrium of fracture propagation. The perforation distribution pattern was optimized,and an orthogonal test was designed to refine the parameters of non-uniform perforation distribution pattern. The findings indicate that under typical shale oil reservoir conditions,the spindle-shaped perforation pattern achieves the best fracture propagation equilibrium,followed by uniform pattern and then the sloped pattern. The mechanism is that,with the spindle-shaped perforation pattern,the clusters at both ends have a perforation friction 1.4~16.7 times greater than that of the central clusters,reducing the stress interference from the heel and toe fractures on the central-cluster fractures. This results in an increased fluid inflow distribution in the central clusters,enhancing the fracture propagation equilibrium by 17.2 % compared to the uniform pattern. Conversely,the sloped perforation pattern,with over 35% of the holes concentrated at the toe cluster and accounting for 49.3 % of the fluid inflow,exerts a significant squeezing effect on the central cluster fractures,which is counterproductive to achieving a balanced fracture propagation. The optimization of the spindle-shaped perforation parameters reveals that an fracture propagation equilibrium is achieved with a total of 49 holes,a perforation diameter of 10 mm,and an end-cluster perforation proportion of 24.5%. The research results are expected to offer an effective approach for the design of non-uniform perforation in multi-cluster fracturing for unconventional oil and gas reservoirs.