[1]肖先勇,郑子萱. “双碳”目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术,2022,54(1):47-59.
XIAO Xianyong,ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality:Contribution,key techniques,and challenges[J]. Advanced Engineering Sciences,2022,54(1):47-59.
[2]程士坚. 油气田分布式光伏发电系统储能安全问题分析[J]. 新疆石油天然气,2022,18(2):51-60.
CHEN Shijian. Analysis on energy storage safety of distributed photovoltaic power generation system in oil and gas fields[J]. Xinjiang Oil & Gas,2022,18(02):51-60.
[3]邹才能,李士祥,熊波,等. 中国建设“能源强国”的内涵、路径与意义[J]. 石油勘探与开发,2025,52(2):463-477.
ZOU Caineng,LI Shixiang,XIONG Bo,et al. Connotation,pathways,and significance of building China into an “energy powerhouse”[J]. Petroleum Exploration and Development,2025,52(2):463-477.
[4]郝昱翔,侯宏霖. 新能源发电系统的控制与优化技术研究[J]. 电子质量,2025,(3):66-69.
HAO Yuxiang,HOU Honglin. Research on control and optimization techniques for renewable energy power generation system[J]. Electronics Quality,2025,(3):66-69.
[5]冯保国,丁泉,戚振忠. 与新能源融合发展为油企注入新动能[J]. 中国石油企业,2023,(5):10-14、127.
FENG Baoguo,DING Quan,QI Zhenzhong. Integration with new energy injects new momentum into oil companies[J]. China Petroleum Enterprise,2023,(5):10-14,127.
[6]潘新慧,陈人杰,吴锋. 电化学储能技术发展研究[J]. 中国工程科学,2023,25(6):225-236.
PAN Xinhui,CHEN Renjie,WU Feng. Development of electrochemical energy storage technology[J]. Strategic Study of CAE,2023,25(6):225-236.
[7]王晓琦,白盛池,杨瑞,等. 中国石油新型储能技术进展与前景展望[J]. 石油科技论坛,2024,43(2):70-82、94.
WANG Xiaoqi,BAI Shengchi,YANG Rui,et al. Progress and prospect of CNPC advanced energy storage technologies[J]. Petroleum Science and Technology Forum,2024,43(2):70-82,94.
[8]李蓝宇,钟雪群,郑英哲,等. 多能互补新范式下的储能系统多尺度智能设计与调控[J]. 中国科学基金,2025,39(2):360-372.
LI lanyu,ZHONG Xuequn,ZHEN Yingzhe,et al. Intelligent multi-scale design and management of energy storage systems in the new paradigm of multi-energy complementarity[J]. Bulletin of National Natural Science Foundation of China ,2025,39(2):360-372.
[9]吉喆. 释放新型储能市场潜力八部门印发方案拓展应用场景[J]. 财经界,2025,(10):37-38.
JI Zhe. Unleash the potential of the new energy storage market:Eight departments issued a program to expand the application scenarios[J]. Money China,2025,(10):37-38.
[10]陈召勇,张建利,朱华丽,等. LiFePO4的制备及其充放电过程中的结构演变和性能研究[J]. 合成化学,2009,17(4):422-427.
CHEN Zhaoyong,ZHANG Jianli,ZHU Huali,et al. Preparation of LiFePO4 and its structure change and performance study in the charge-discharge cycles[J]. Chinese Joumal of Synthetic Chemistry,2009,17(4):422-427.
[11]胡江涛,郑家新,潘锋. 锂电池磷酸铁锂正极材料的结构与性能相关性的研究进展[J]. 物理化学学报,2019,35(4):361-370.
HU Jiangtao,ZHENG Jiaxin,PAN Feng,et al. Research progress into the structure and performance of LiFePO4 cathode materials[J]. Acta Physico-Chimica Sinica,2019,35(4):361-370.
[12]宋真玉. 磷酸铁锂蓄电池充电原理及特性研究[J]. 汽车实用技术,2018,43(21):16-18、37.
SONG Zhenyu. Study on charging principle and characteristics of lithium iron phosphate battery[J]. Automobile Technology,2018,43(21):16-18,37.
[13]ZHU G,WEN K,LV W,et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources,2015,300:29-40.
[14]LU X,ZHAO L,HE X,et al. Lithium storage in Li4Ti5O12 spinel:The full static picture from electron microscopy[J]. Advanced Materials,2012,24(24):3233-8.
[15]OHZUKU T,UEDA A,YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of The Electrochemical Society,1995,142(5):1431.
[16]ZAGHIB K,DONTIGNY M,GUERFI A,et al. Safe and fast-charging Li-ion battery with long shelf life for power applications[J]. Journal of Power Sources,2011,196(8):3949-54.
[17]陈海生,刘畅,徐玉杰,等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术,2021,10(5):1477-85.
CHEN Haisheng,LIU Chang,XU Yujie,et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology,2021,10(5):1477-1485.
[18]EZHYEH Z N,KHODAEI M,TORABI F. Review on doping strategy in Li4Ti5O12 as an anode material for Lithium-ion batteries[J]. Ceramics International,2023,49(5):7105-7141.
[19]鲍忠利,冯永仁,于会媛. 浅谈井下高温锂电池的安全应用[J]. 化工管理,2013,(2):105-106.
BAO Zhongli,FENG Yongren,YU Huiyuan. Security application of high temperature Lithium batteries in drilling tools[J]. Chemical Enterprise Management,2013,(2):105-106.
[20]孙志远,徐桂旭,王守朋,等. 高温直推存储式测井系统的研发与应用[J]. 测井技术,2025,49(2):226-234.
SUN Zhiyuan,XU Guixu,WANG Shoupeng,et al. Development and application of high temperature direct push storage logging system[J]. Well Logging Technology,2025,49(2):226-234.
[21]DAI X,ZHOU K,ZHANG L,et al. Polymer-based solid electrolyte with ultra thermostability exceeding 300 ℃ for high-temperature lithium-ion batteries in oil drilling industries[J]. Nano Energy,133.
[22]张红梅,廖丽,王开琼,等. 磷酸酯基高温电解液在锂金属二次电池中的应用[J]. 电源技术,2024,48(8):1566-1571.
ZHANG Hongmei,LIAO Li,WANG Kaiqiong,et al. Application of phosphate ester based high temperature electrolyte to lithium metal secondary batteries[J]. Chinese Journal of Power Sources ,2024,48(8):1566-1571.
[23]ZHAO R,GU J,LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of Power Sources,2015,273:1089-1097.
[24]朱信龙,王均毅,潘加爽,等. 集装箱储能系统热管理系统的现状及发展[J]. 储能科学与技术,2022,11(1):107-118.
ZHU Xinlong,WANG Junyi,PAN Jiashuang,et al. Present situation and development of thermal management system for battery energy storage system[J]. Energy Storage Science and Technology,2022,11(1):107-118.
[25]YANG C,ZHENG M,QU R,et al. Engineering a boron-rich interphase with nonflammable electrolyte toward stable Li||NCM811 cells under elevated temperature[J]. Advanced Materials,2024,36(1):2307220.
[26]柴宇惟. 面向高温条件下的全钒液流电池性能和热稳定性改进研究[D]. 吉林长春:吉林大学,2024.
CHAI Yuwei. Study on improving the performance and thermal stability of vanadium redox flow batteries under high temperature[D]. Changchun,Jilin:Jilin University,2024.
[27]高海. 全钒液流电池关键材料研究进展及展望[J]. 能源与环境,2023,(6):73-75、87.
GAO Hai. Progress and prospects of key materials for vanadium redox flow batteries[J]. Energy and Environment,2023,(6):73-75,87.
[28]霍婧,崔志广. 加快全钒液流电池在大容量储能领域的商业化应用[J]. 工业技术创新,2019,6(3):100-102.
HUO Jing,CUI Zhiguang. To accelerate the commercialization of vanadium redox flow battery for high capacity energy storage[J]. Industrial Technology Innovation,2019,6(3):100-102.
[29]陈继忠,来小康,惠东,等. 全钒液流电池功率/能量响应能力的测试与分析[J]. 储能科学与技术,2014,3(5):486-489.
CHEN Jizhong,LAI Xiaokang,HUI Dong,et al. Testing and analyzing power-energy response capability of the vanadium redox flow battery[J]. Energy Storage Science and Technology,2014,3(5):486-489.
[30]贺磊. 锌溴液流电池中锌沉积问题的研究[D].吉林长春:吉林大学,2009.
HE Lei. Study on zinc-deposition of Zn-Br flow battery[D]. Changchun,Jilin:Jilin University,2009.
[31]SINGH P,JONSHAGEN B. Zinc bromine battery for energy storage[J]. Journal of Power Sources,1991,35(4):405-410.
[32]王天虎,刘如祎,王光绪,等. 操作与结构参数对锌溴液流电池性能的影响[J]. 工程热物理学报,2024,45(11):3517-3523.
WANG Tianhu,LIU Ruyi,WANG Guangxu,et al. Effect of operational and structure parameters on the performance of Zinc Bromine redox flow battery[J]. Journal of Engineering Thermophysics,2024,45(11):3517-3523.
[33]VANGAPALLY N,PENKI T R,ELIAS Y,et al. Lead-acid batteries and lead-carbon hybrid systems:A review[J]. Journal of Power Sources,2023,579:233312.
[34]PAMETé E,KPS L,KRETH F A,et al. The many deaths of supercapacitors:Degradation,aging,and performance fading[J]. Advanced Energy Materials,2023,13(29):1.
[35]张步涵,王云玲,曾杰. 超级电容器储能技术及其应用[J]. 水电能源科学,2006,24(5):50-52、100.
ZHANG Buhan,WANG Yunlin,ZENG Jie. Supercapacitor energy storage technology and its application[J]. Water Resources and Power,2006,24(5):50-52,100.
[36]王建元,王智文,谢天才. 基于超级电容的抽油机制动能量回收系统研究[J]. 东北电力大学学报,2021,41(1):99-106.
WANG Jianyuan,WANG Zhiwen,XIE Tiancai. Research on braking energy storage system based on super-capacitor for pumping unit[J]. Journal of Northeast Dianli University (Natural Science Edition),2021,41(1):99-106.
[37]HUANG J,XIE Y,YOU Y,et al. Rational design of electrode materials for advanced supercapacitors:From lab research to commercialization[J]. Advanced Functional Materials,2023,33(14):2213095.
|