Xinjiang Oil & Gas ›› 2025, Vol. 21 ›› Issue (4): 81-89.DOI: 10.12388/j.issn.1673-2677.2025.04.010

• NEW ENERGY • Previous Articles     Next Articles

Intelligent Design Methodology of Large Scale Photovoltaic Power Stations in Desert Areas Based on Particle Swarm Optimization

TUERAILI Hayinaer1,GAO Liang1,WEI Liyao2,XIONG Xiaoqin3,ZHANG Lei3,LI Yichang3   

  1. 1.Coal Power Joint Venture Integration Project Management Department,PetroChina Xinjiang Oilfield Company;

    2. Electric Power Company,PetroChina Xinjiang Oilfield Company;

    3. Karamay Campus,China University of Petroleum (Beijing).

  • Received:2025-01-14 Revised:2025-07-25 Accepted:2025-09-30 Online:2025-11-17 Published:2025-11-17
  • Supported by:

    1.国家自然科学基金项目“工业无源网络的低功耗高可靠感知和传输方法研究”(61802184);

    2.中国石油大学(北京)克拉玛依校区科研启动基金项目“面向智慧农业的绿色低碳无源技术研究”(XQZX20220004);

    3.新疆维吾尔自治区天池博士计划项目。

基于粒子群优化的荒漠地区大型光伏电站智能设计方法

哈衣那尔·吐尔艾力1,高亮1,魏立尧2,熊小琴3,张磊3,李义常3   

  1. 1.中国石油新疆油田分公司煤电联营一体化项目经理部;

    2.中国石油新疆油田分公司电力公司;

    3.中国石油大学(北京)克拉玛依校区。

  • 通讯作者: 熊小琴(1983-),2007年毕业于西南石油大学油气储运专业,副教授,目前从事油气输送工艺优化方面的教学研究。(E-mail)xiongxiaoqin@cupk.edu.cn
  • 作者简介:哈衣那尔·吐尔艾力(1996-),2022年毕业于武汉大学电气工程专业,硕士,工程师,目前从事新能源、电力系统方面的研究。(E-mail)HYNR1022@whu.edu.cn

Abstract:

The 2 640 MW large scale centralized grid-connected photovoltaic power station in Karamay,Xinjiang,is taken as an example in this paper,and an intelligent design method for photovoltaic power stations is proposed,based on the Particle Swarm Optimization (PSO) algorithm. This method uses photovoltaic module type selection,installation angle,array spacing and other design parameters as optimization variables,with annual power generation maximization as the objective function and investment costs as constraints,to construct a multi-objective optimization model. Power generation simulation is performed using the PVsyst software combined with MATLAB programming to implement PSO algorithm optimization. Simulation results show that compared with traditional design methods,the intelligent optimization method proposed in this paper can increase the annual power generation of the 2 640 MWphotovoltaic power stations by 3.2% to 41.26×108 kW·h,and shorten the investment payback period by 0.5 years. After completion,the project can reduce CO2 emissions by approximately 7.176×107 t per year,with significant economic and social benefits. The proposed method provides new ideas for intelligent design of large scale photovoltaic power stations.

Key words:

centralized photovoltaic power station, equipment selection, photovoltaic array design, grid-connected power generation, energy conservation and carbon reduction

摘要:

为提升荒漠地区光伏电站发电量,以新疆克拉玛依地区2 640 MW大型集中式并网光伏电站为例,提出一种基于粒子群优化(PSO)算法的光伏电站智能设计方法。该方法将光伏组件型号选择、安装倾角、阵列间距等设计参数作为优化变量,以年发电量最大化为目标函数,同时考虑投资成本约束,构建多目标优化模型。通过PVsyst软件进行发电量仿真,结合MATLAB编程软件实现PSO算法优化求解。仿真结果表明,与传统设计方法相比,提出的智能优化方法可使新建2 640 MW光伏电站年发电量提升3.2%,达到41.26×108 kW·h,投资回收期缩短0.5年。项目建成后每年可减少CO2排放量约7.176×107 t,具有显著的经济效益和社会效益,为大型光伏电站智能化设计提供了新思路。

关键词:

集中式光伏电站, 设备选型, 光伏阵列设计, 并网发电, 节能减碳

CLC Number: