[1]ZHOU S,HUANG P,WANG L,et al. Robust changes in global subtropical circulation under greenhouse warming[J]. Nature Communications,2024,15(1):9.
[2]ROEBROEK C T,CAPORASO L,ALKAMA R,et al. Climate policies for carbon neutrality should not rely on the uncertain increase of carbon stocks in existing forests[J]. Environmental Research Letters,2024,19(4):044050.
[3]郭百红,顾学华,赵文景. 碳达峰碳中和背景下CCUS产业发展现状及未来发展策略研究[J]. 环境科学与管理,2025,50(4):23-28.
GUO Baihong,GU Xuehua,ZHAO Wenjing. Current status and future strategies of CCUS industry under background of Carbon Peak and Carbon Neutrality[J]. Environmental Science and Management,2025,50(4):23-28.
[4]SUN L,DOU H,LI Z,et al. Assessment of CO2 storage potential and carbon capture,utilization and storage prospect in China[J]. Energy Inst. 2018,91(6):970-977.
[5]EDOUARD M N,OKERE C J,EJIKE C,et al. Comparative numerical study on the co-optimization of CO2 storage and utilization in EOR,EGR,and EWR:Implications for CCUS project development[J]. Appl. Energ. 2023,347:121448.
[6]SUN L,LIU Q,CHEN H,et al. Source-sink matching and cost analysis of offshore carbon capture,utilization,and storage in China[J]. Energy. 2024,291:130137.
[7]刘世奇,莫航,桑树勋,等. 宁夏回族自治区碳捕集、利用与封存源汇匹配与集群部署[J]. 煤炭学报,2024,49(3):1583-1596.
LIU Shiqi,MO Hang,SANG Shuxun,et al. Source-sink matching and cluster deployment of carbon capture,utilization and sequestration in Ningxia Hui Autonomous Region[J]. Journal of China Coal Society,2024,49(3):1583-1596.
[8]MIDDLETON R S,BIELICKI J M. A scalable infrastructure model for carbon capture and storage:SimCCS[J]. Energy Policy,2009,37(3):1052-1060.
[9]DIAMANTE J,TAN R R,FOO D. A graphical approach for pinch-based source-sink matching and sensitivity analysis in carbon capture and storage systems[J]. Industrial & Engineering Chemistry Research,2013,52(22):7211-7222.
[10]HASAN M,BOUKOUVALA F,FIRST E L,et al. Nationwide,regional,and statewide CO2 capture,utilization,and sequestration supply chain network optimization[J]. Industrial & Engineering Chemistry Research,2014,53(18):7489-7506.
[11]TAN R R,AVISO K B,BANDYOPADHYAY S,et al. Continuous-time optimization model for source-sink matching in carbon capture and storage systems[J]. Industrial & Engineering Chemistry Research,2012,51(30):10015-10020.
[12]DIAMANTE J A R,TAN R R,FOO D C Y,et al. Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions[J]. Journal of Cleaner Production,2014,71:67-74.
[13]AZIZ E A,ALWI S R W,LIM J S,et al. An integrated pinch analysis framework for low CO2 emissions industrial site planning[J]. Journal of Cleaner Production,2017,146:125-138.
[14]HE Y J,ZHANG Y,MA Z F,et al. Optimal source-sink matching in carbon capture and storage systems under uncertainty[J]. Industrial & Engineering Chemistry Research,2014,53(2):778-785.
[15]TANG H T,ZHANG S,CHEN W Y. Assessing representative CCUS layouts for China's power sector toward carbon neutrality[J]. Environmental Science & Technology,2021,55(16):11225-11235.
[16]朱磊,吴佳豪,何撼东. 考虑源汇匹配的我国CCUS部署路径研究[J]. 煤炭经济研究,2025,45(1):76-83.
ZHU Lei,WU Jiahao,HE Handong. Study on China′s CCUS deployment pathway considering source-sink matching[J]. Coal Economic Research,2025,45(1):76-83.
[17]JIAO Y,WANG W,CHEN J,et al. Integrated planning model for carbon capture and storage systems considering CO2 pipeline transportation properties[J]. Industrial & Engineering Chemistry Research,2024,63(43):18467-18478.
[18]CHEN C,MA S,WANG X,et al. CCUS source-sink matching model based on sink well placement optimization[J]. Fuel,2024,377:132812.
[19]ZHANG Q,LIU J,WANG G,et al. A new optimization model for carbon capture utilization and storage (CCUS) layout based on high-resolution geological variability[J]. Applied Energy,2024,363:123065.
[20]FAN J L,LI Z,DING Z,et al. Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models[J]. Energy Economics,2023,126:106972.
[21]高明,孙盈盈,尹恒飞,等. 二氧化碳捕集、驱油与埋存技术进展及前景展望[J]. 石油科技论坛,2024,43(4):58-65.
GAO Ming,SUN Yingying,YIN Hengfei,et al. Progress and prospect of CCUS-EOR technology[J]. Petroleum Science and Technology Forum,2024,43(4):58-65.
[22]HAN Z,LIU H,ZHAO D,et al. Monte Carlo sensitivity analysis for a carbon capture,utilization,and storage whole-process system[J]. Processes,2025,13(5):1356.
[23]李静,李全胜,章榕,等. CO2捕集技术的研究进展与展望[J]. 广州化工,2025,53(8):40-43.
LI Jing,LI Quansheng,ZHANG Rong,et al. Research progress and prospect of CO2 capture technology[J]. Guangzhou Chemical Industry,2025,53(8):40-43.
[24]刘克峰,刘陶然,蔡勇,等. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展,2024,43(6):2901-2914.
LIU Kefeng,LIU Taoran,CAI Yong,et al. Progress in research and engineering demonstration of CO2 capture technology[J]. Chemical Industry and Engineering Progress,2024,43(6):2901-2914.
[25]杨田萌,杨凡,热则耶·热合米图力,等. 醇胺吸收法捕集二氧化碳研究进展[J]. 新疆石油天然气,2024,20(1):52-60.
YANG Tianmeng,YANG Fan,REZHEYE Rehemituli,et al. Research progress on CO2 capture by alcohol amine absorption method[J]. Xinjiang Oil & Gas,2024,20(1):52-60.
[26]MORE P,RODRIGUEZ N,SCENNA N,et al. CO2 capture in power plants:Minimization of the investment and operating cost of the post-combustion process using MEA aqueous solution[J]. International Journal of Greenhouse Gas Control,2012,10:148-163.
[27]白宏山. CO2捕集、运输、驱油与封存全流程随机优化算法研究[D]. 山东青岛:中国石油大学(华东),2020.
BAI Hongshan. Research on stochastic optimization algorithm of whole process for CO2 capture,transportation,utilization and storage[D]. Qingdao,Shangdong:China University of Petroleum (East China),2020.
[28]徐冬,刘建国,王立敏,等. CCUS中CO2运输环节的技术及经济性分析[J]. 国际石油经济,2021,29(6):8-16.
XU Dong,LIU Jianguo,WANG Limin,et al. Technical and economic analysis on CO2 transportation link in CCUS[J]. International Petroleum Economics,2021,29(6):8-16.
[29]马赟,赵黎. 双碳背景下二氧化碳输送管道智能化技术应用及探索[J]. 新疆石油天然气,2024,20(4):87-94.
MA Yun,ZHAO Li. Applications and exploration of intelligent technology for CO2 transportation pipelines in the background of Carbon Peak and Carbon Neutrality[J]. Xinjiang Oil & Gas,2024,20(4):87-94.
[30]赵东亚,张建,刘海丽,等. CO2管道运输的工程—经济模型[J]. 石油工程建设,2013,39(5):1-3、6.
ZHAO Dongya,ZHANG Jian,LIU Haili,et al. Engineering-economic model of CO2 transportation by pipeline[J]. Petroleum Engineering Construction,2013,39(5):1-3,6.
[31]MCCOLLUM D L,OGDEN J M. Techno-economic models for carbon dioxide compression,transport,and storage & correlations for estimating carbon dioxide density and viscosity[D]. California,USA:UC Davis,2006.
[32]方杰,雷宏武,时俊杰,等. CO2地质封存与利用技术发展态势与展望[J]. 热力发电,2025,54(6):157-167.
FANG Jie,LEI Hongwu,SHI Junjie,et al. Research on carbon dioxide geological storage and utilization:Progress and prospects[J]. Thermal Power Generation,2025,54(6):157-167.
[33]刘佳佳. CO2捕集、运输、驱油与封存全流程建模与优化研究[D]. 山东青岛:中国石油大学(华东),2019.
LIU Jiajia. Modeling and optimization of CO2 capture,transportation,oil displacement and storage process[D]. Qingdao,Shangdong:China University of Petroleum (East China),2019.
[34]郭彦茹,罗志雄,王家川,等. 数据驱动的共享单车停放区规划方法研究[J]. 交通运输系统工程与信息,2021,21(6):9-16.
GUO Yanru,LUO Zhixiong,WANG Jiachuan,et al. Data-driven planning and design for bike sharing parking spots[J]. Journal of Transportation Systems Engineering and Information Technology,2021,21(6):9-16.
[35]NIE S,CAI G,HE J,et al. Economic costs and environmental benefits of deploying CCUS supply chains at scale:Insights from the source-sink matching LCA-MILP approach[J]. Fuel,2023,344:128047.
[36]YANG H,ZHANG P,ZHANG C,et al. A study on CO2 emission reduction strategies of coal-fired power plants based on CCUS-ECBM source-sink matching[J]. Energies,2024,17(23):5983.
[37]张文华. 基于节约里程法的物流配送路线优化[J]. 物流工程与管理,2012,34(3):143-144、146.
ZHANG Wenhua. Route optimization of logistics distribution based on saving algorithm [J]. Logistics Engineering and Management,2012,34(3):143-144,146.
[38]白宏山,赵东亚,田群宏,等. CO2捕集、运输、驱油与封存全流程随机优化[J]. 化工进展,2019,38(11):4911-4920.
BAI Hongshan,ZHAO Dongya,TIAN Qunhong,et al. Stochastic optimization of the whole process of CO2 capture,transportation,utilization and sequestration[J]. Chemical Industry and Engineering Progress,2019,38(11):4911-4920.
|