Xinjiang Oil & Gas ›› 2025, Vol. 21 ›› Issue (4): 34-46.DOI: 10.12388/j.issn.1673-2677.2025.04.005

• OIL AND GAS DEVELOPMENT • Previous Articles     Next Articles

Research Methods and Main Control Factors of Proppant Migration and Placement Characteristics within Fractures

WANG Bo,SHENG Shaopeng,LIAO Shunli,YAN Tingwei,ZHOU Lintai   

  1. Karamay Campus,China University of Petroleum (Beijing)

  • Received:2025-05-28 Revised:2025-09-18 Accepted:2025-09-30 Online:2025-11-17 Published:2025-11-17

支撑剂缝内运移铺置特征研究方法及主控因素

王博,盛少鹏,廖顺利,颜廷巍,周麟泰   

  1. 中国石油大学(北京)克拉玛依校区

  • 作者简介:王博(1990-),2020年毕业于中国石油大学(北京)油气井工程专业,博士,副教授,长期从事水力压裂现场工艺、数值模拟、物模实验方面的研究。(E-mail)wb_cup@163.com
  • 基金资助:

    1.国家自然科学基金项目“段内多簇压裂射孔孔眼封堵控制机理研究”(52374057);

    2.“天山英才”青年科技创新人才项目“非常规油气集团压裂控制机理与智能优化研究”(2023TSYCCX0004)

Abstract:

Proppant transport is a critical process that determines the conductivity of hydraulic fractures and thus,is of great significance for the efficient development of unconventional oil and gas reservoirs. This paper systematically reviews the progress in research on proppant transport,summarizes the advantages and limitations of three types of research methods,namely theoretical models,physical experiments,and numerical simulations,and reveals the multi-factor coupling effects of proppant characteristics,fracture morphology,operational parameters and reservoir environment are revealed. It is indicated that micronized proppants can enhance the filling rate of secondary fractures,but need to be combined with composite proppant injection processes to compensate for insufficient near-end support. In complex fractures,proppant distribution is considerably influenced by the flow splitting and rough fracture surface,requiring optimization through temporary plugging diversion and high-viscosity fracturing fluids. The integration of numerical simulations and machine learning techniques has significantly improved the prediction accuracy of complex fracture networks. Future research shall more focus on dynamic characterization of multi-scale fracture networks,long-term conductivity evaluation under high temperature and pressure,and the industrial application of intelligent fracturing technologies to facilitate controllable proppant placement and long-term conductivity and provide theoretical support for the efficient development of unconventional oil and gas resources.

Key words:

unconventional oil and gas, hydraulic fracturing, proppant, settlement and migration

摘要:

支撑剂运移是决定水力压裂裂缝导流能力的关键过程,对非常规油气储层高效开发具有重要意义。通过系统梳理支撑剂运移领域的研究进展,从理论模型、物理实验与数值模拟三方面总结研究方法的优势与局限性,揭示了支撑剂特性、裂缝形态、施工参数及储层环境的多因素耦合作用规律。研究表明:微粉支撑剂可提升次级裂缝充填率,但需结合组合加砂工艺弥补近端支撑不足;复杂裂缝中支撑剂分布受分流效应与粗糙壁面影响显著,需通过暂堵转向与高黏压裂液协同优化;数值模拟与机器学习技术的结合显著提升了复杂缝网的预测精度。未来研究需聚焦多尺度缝网动态表征、高温高压长效导流评价及智能化压裂技术的工业化应用,以实现支撑剂分布可控化与导流能力长效化,为非常规油气资源高效开发提供理论支撑。

关键词:

非常规油气, 水力压裂, 支撑剂, 沉降运移

CLC Number: